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THE RADIUS OF CLOSE-TO-CONVEXITY OF FUNCTIONS
OF BOUNDED BOUNDARY ROTATION

H. B. COONCE! AND M. R. ZIEGLER

ABSTRACT. An analytic function whose boundary rotation is
bounded by kn (kZ2) is shown to map a disc of radius r, onto a
close-to-convex domain, where r, is the solution of a transcendental
equation when k>4 and r,=1 when 2 <k =4. The above value of
ri is shown to be the best possible for each k and an asymptotic ex-
pression for ry is obtained.

Let V, (k=2) denote the class of functions f (z) which are analytic in the
unit disc E={z:|z| <1}, normalized by f(0)=0 and f’(0)=1, have non-
vanishing derivatives in .E, and map E onto a domain which has boundary
rotation at most km. If k=2, then V, is precisely the set of univalent
functions which map E onto a convex domain. If 2<k =<4, then V, is a
subset of the functions which map E onto a close-to-convex domain ([1],
[6]). Finally, if k>4, then functions in ¥, need not be close-to-convex or
even univalent. In this paper we determine the radius of close-to-convexity
of ¥V, foreachk,i.e. theradiusof the largest disc centered at the origin which
is mapped onto a close-to-convex domain by all fin V. The techniques
used are similar to those used by Krzyz in determining the radius of close-
to-convexity of the class of univalent functions [2]. Some related problems
were posed by M. O. Reade [5].

THEOREM 1. If k>4, the radius of close-to-convexity of V, is the unique
root of the equation

(H 2 cot™lw — k cot Y (kw/2) = —7

in the interval (R, 1) where R is the radius of convexity of V, and w=
(1—=r?)[k2r2— (142?172 while if 2=k £4, the radius of close-to-convexity
is 1.

Proor. Kaplan [1] has shown that a necessary and sufficient condition
for a function f(z), regular in E and satisfying f'(z)#0: to map |z|=r onto
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a close-to-convex curve is that
)] ‘dfg[sz'(Zz)] - afg[Zlf'(Zl)] Z -7

for all z; and z, with |z,{=r and z,=z,e"’, 0<0 <27. The radius of close-
to-convexity of V, is the largest value of r for which (2) holds for all f(z) in
V. The radius of convexity R, of V, is the smallest positive root of the
equation 1—kr+4r?>=0; R,=1 and R, <l when k>2 [3]. Clearly the
radius of close-to-convexity is larger than R, when k>2 and equal to R,
when k=2, hence we assume throughout the remainder of this work that

r>R, and k>2.
Define
3) A(r, 0) = inf arg[z,f'(2,)/z,f'(21)],

fev,
where z; and z, are defined as above and the argument is chosen to vary
continuously from an initial value of zero. Let {=(z—z,)/(1—Z,z) and
{o=(z; — 21)/(1—Z,2,) and define g({) by
g(0) = [f({L + =} [{1 + 28D — [N/ f' (21 = |z
Robertson has shown that g(z) is in V; whenever f'(z) isin V, [7]. Evaluating
g'(&,) directly yields
g'(Go) = ['(zo)(1 — 5122)2/fl(21)(1 - IZ1I2)2;
hence we have A(r, 0)=arg[(z,/z,)(1 —Z,2z,)2]+inf argyer, [8'({o)]. Now
arg[(zo/z)(1 — 2,25)7%] = 2 cot ' [(1 — r¥)cot(6/2)/(1 + r*)],
1l = r[2(1 — cos 0)/(1 — 2r®cos 0 + r)]"'2
and
(4) infarglg' (0] = —k cot ! [(1 — [ §,*)¥/14,] (4];

yel",:
thus a brief calculation shows
Ar, 0) = 2 cot™[(1 — r)cot(0/2)/(1 + )]
> — kcot™[(1 — r*)/r{2(1 — cos 6)}"].

Furthermore, this estimate is sharp since, for a fixed z, and z,, if g({) is the
function which gives equality in (4) and f(z) is defined by

f(2) = [gliz = 2 [{l = 212} — g(=2))/g'(=z)(1 — |z]?),

then equality occurs in (3) for this choice of f(z). Let A(r)=inf A(r, 0)
(0<0<2m). Differentiating (5) with respect to 6 we obtain

OA(r, 0)[00 = [1 4+ r* — krcos(6/2)[(1 — /(1 — 2r*cos U + r');
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hence A(r, 6) assumes its minimum value for a fixed r when 6 =0, where
cos(6y/2)=(1+r?)/kr. The existence of 6, is assured by the fact that for
r>R,, (14r?)/kr<1. Substituting in (5), we have

(6) A(r) = 2 cot~lw — k cot=1(kw/2)

where w=(1 —r?)[k?r2— (1+r?)?]"V/2 It is evident that A(r) is a decreasing
function of r, hence A(r)=A(1)=n(2—k)/2. For k=4, A(1)= — and the
radius of close-to-convexity is 1, while for k>4, A(1) < — and A(R,)=0;
hence there exists a unique solution r, to the equation A(r)=—=, R, <r<I1,
and this solution is the radius of close-to-convexity.

Table 1 gives the approximate value of r, for various k. [The calculations
were performed on a Univac 1106 by Mr. Michael Barnett of the Computer
Science Center of Mankato State College.]

TABLE 1

k T k T k T

4 1 9  0.34593 50 0.05952

S 0.70388 10 0.30849 100 0.02973

6  0.55362 20 0.1499%4 200 0.01486

7 0.45961 30 0.09946 400 0.00743

8  0.39431 40  0.07446 800 0.00371

THEOREM 2. lim, . kr,=2.9716...=0o where « is the unique root of

the equation
@) cot [(aF — 7] — (& = NP = =72

in the interval [m]2, m].

PrOOF. If f(z) is in V,, then (4) implies Re{f"(z)} >0 for |z| <m/2k.
Re{f’(z)} >01is a sufficient condition for close-to-convexity, hence r, = /2k.
An examination of the mapping properties of the function

Sfo(z) = (R + 2)/(1 = ]2 = 1

shows that the radius of univalence p, of f,(z) satisfies p.=csc(2m/k)—
cot(2m/k). Since lim kp,=m (k ->oc), we have z=lim sup hr Sm (k—00).
If {k,} is any sequence such that lim k r, == (n >), then it follows from
(1) that « satisfies (7). However a differentiation of (7) shows the left-hand
side to be a monotonic decreasing function and thus lim Ar, (k->c0) must
exist and is the unique root of (7).
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