THE RADIUS OF CLOSE-TO-CONVEXITY OF FUNCTIONS OF BOUNDED BOUNDARY ROTATION

H. B. COONCE¹ AND M. R. ZIEGLER

ABSTRACT. An analytic function whose boundary rotation is bounded by $k\pi$ ($k \ge 2$) is shown to map a disc of radius r_k onto a close-to-convex domain, where r_k is the solution of a transcendental equation when k > 4 and $r_k = 1$ when $2 \le k \le 4$. The above value of r_k is shown to be the best possible for each k and an asymptotic expression for r_k is obtained.

Let V_k $(k \ge 2)$ denote the class of functions f(z) which are analytic in the unit disc $E = \{z: |z| < 1\}$, normalized by f(0) = 0 and f'(0) = 1, have nonvanishing derivatives in E, and map E onto a domain which has boundary rotation at most $k\pi$. If k = 2, then V_k is precisely the set of univalent functions which map E onto a convex domain. If $2 < k \le 4$, then V_k is a subset of the functions which map E onto a close-to-convex domain ([1], [6]). Finally, if k > 4, then functions in V_k need not be close-to-convex or even univalent. In this paper we determine the radius of close-to-convexity of V_k for each k, i.e. the radius of the largest disc centered at the origin which is mapped onto a close-to-convex domain by all f in V_k . The techniques used are similar to those used by Krzyż in determining the radius of close-to-convexity of the class of univalent functions [2]. Some related problems were posed by M. O. Reade [5].

THEOREM 1. If k > 4, the radius of close-to-convexity of V_k is the unique root of the equation

(1)
$$2 \cot^{-1} w - k \cot^{-1} (kw/2) = -\pi$$

in the interval $(R_k, 1)$ where R_k is the radius of convexity of V_k and $w = (1-r^2)[k^2r^2-(1+r^2)^2]^{-1/2}$, while if $2 \le k \le 4$, the radius of close-to-convexity is 1.

PROOF. Kaplan [1] has shown that a necessary and sufficient condition for a function f(z), regular in E and satisfying $f'(z) \neq 0$; to map |z| = r onto

Presented to the Society, January 18, 1972; received by the editors October 14, 1971 and, in revised form, January 3, 1972.

AMS 1970 subject classifications. Primary 30A32.

Key words and phrases. Bounded boundary rotation, radius of close-to-convexity.

¹ This research was supported in part by a Mankato State College Faculty Research Council Grant.

a close-to-convex curve is that

(2)
$$\arg[z_2 f'(z_2)] - \arg[z_1 f'(z_1)] \ge -\pi$$

for all z_1 and z_2 with $|z_1|=r$ and $z_2=z_1e^{i\theta}$, $0<\theta<2\pi$. The radius of close-to-convexity of V_k is the largest value of r for which (2) holds for all f(z) in V_k . The radius of convexity R_k of V_k is the smallest positive root of the equation $1-kr+r^2=0$; $R_2=1$ and $R_k<1$ when k>2 [3]. Clearly the radius of close-to-convexity is larger than R_k when k>2 and equal to R_k when k=2, hence we assume throughout the remainder of this work that $r>R_k$ and k>2.

Define

(3)
$$\Delta(r, \theta) = \inf_{f \in V_{+}} \arg[z_{2}f'(z_{2})/z_{1}f'(z_{1})],$$

where z_1 and z_2 are defined as above and the argument is chosen to vary continuously from an initial value of zero. Let $\zeta = (z-z_1)/(1-\bar{z}_1z)$ and $\zeta_0 = (z_2-z_1)/(1-\bar{z}_1z_2)$ and define $g(\zeta)$ by

$$g(\zeta) = [f(\{\zeta + z_1\}/\{1 + \bar{z}_1\zeta\}) - f(z_1)]/f'(z_1)(1 - |z_1|^2).$$

Robertson has shown that g(z) is in V_k whenever f(z) is in V_k [7]. Evaluating $g'(\zeta_0)$ directly yields

$$g'(\zeta_0) = f'(z_2)(1 - \bar{z}_1 z_2)^2 / f'(z_1)(1 - |z_1|^2)^2;$$

hence we have $\Delta(r, \theta) = \arg[(z_2/z_1)(1-\bar{z}_1z_2)^{-2}] + \inf \arg_{g \in V_h}[g'(\zeta_0)]$. Now

$$\arg[(z_2/z_1)(1-\bar{z}_1z_2)^{-2}] = 2\cot^{-1}[(1-r^2)\cot(\theta/2)/(1+r^2)],$$
$$|\zeta_0| = r[2(1-\cos\theta)/(1-2r^2\cos\theta+r^4)]^{1/2},$$

and

(4)
$$\inf_{g \in V_{L}} \arg[g'(\zeta_{0})] = -k \cot^{-1}[(1 - |\zeta_{0}|^{2})^{1/2}/|\zeta_{0}|]$$
 [4];

thus a brief calculation shows

(5)
$$\Delta(r, \theta) = 2 \cot^{-1}[(1 - r^2)\cot(\theta/2)/(1 + r^2)] - k \cot^{-1}[(1 - r^2)/r\{2(1 - \cos\theta)\}^{1/2}].$$

Furthermore, this estimate is sharp since, for a fixed z_1 and z_2 , if $g(\zeta)$ is the function which gives equality in (4) and f(z) is defined by

$$f(z) = \left[g(\{z - z_1\}/\{1 - \bar{z}_1 z\}) - g(-z_1) \right]/g'(-z_1)(1 - |z_1|^2),$$

then equality occurs in (3) for this choice of f(z). Let $\Delta(r) = \inf \Delta(r, \theta)$ $(0 < \theta < 2\pi)$. Differentiating (5) with respect to θ we obtain

$$\partial \Delta(r, \theta)/\partial \theta = [1 + r^2 - kr\cos(\theta/2)](1 - r^2)/(1 - 2r^2\cos\theta + r^4)$$
;

hence $\Delta(r, \theta)$ assumes its minimum value for a fixed r when $\theta = \theta_0$ where $\cos(\theta_0/2) = (1+r^2)/kr$. The existence of θ_0 is assured by the fact that for $r > R_k$, $(1+r^2)/kr < 1$. Substituting in (5), we have

(6)
$$\Delta(r) = 2 \cot^{-1} w - k \cot^{-1} (kw/2)$$

where $w = (1-r^2)[k^2r^2 - (1+r^2)^2]^{-1/2}$. It is evident that $\Delta(r)$ is a decreasing function of r, hence $\Delta(r) \ge \Delta(1) = \pi(2-k)/2$. For $k \le 4$, $\Delta(1) \ge -\pi$ and the radius of close-to-convexity is 1, while for k > 4, $\Delta(1) < -\pi$ and $\Delta(R_k) = 0$; hence there exists a unique solution r_k to the equation $\Delta(r) = -\pi$, $R_k < r < 1$, and this solution is the radius of close-to-convexity.

Table 1 gives the approximate value of r_k for various k. [The calculations were performed on a Univac 1106 by Mr. Michael Barnett of the Computer Science Center of Mankato State College.]

Table 1					
\boldsymbol{k}	r_k	k	r_k	k	r_k
4	1	9	0.34593	50	0.05952
5	0.70388	10	0.30849	100	0.02973
6	0.55362	20	0.14994	200	0.01486
7	0.45961	30	0.09946	400	0.00743
8	0.39431	40	0.07446	800	0.00371

THEOREM 2. $\lim_{k\to\infty} kr_k=2.9716...=\alpha$ where α is the unique root of the equation

(7)
$$\cot^{-1}[(\alpha^2 - 1)^{-1/2}] - (\alpha^2 - 1)^{1/2} = -\pi/2$$

in the interval $[\pi/2, \pi]$.

PROOF. If f(z) is in V_k , then (4) implies $\text{Re}\{f'(z)\} > 0$ for $|z| < \pi/2k$. $\text{Re}\{f'(z)\} > 0$ is a sufficient condition for close-to-convexity, hence $r_k \ge \pi/2k$. An examination of the mapping properties of the function

$$f_0(z) = (1/k)\{[(1+z)/(1-z)]^{k/2} - 1\}$$

shows that the radius of univalence ρ_k of $f_0(z)$ satisfies $\rho_k = \csc(2\pi/k) - \cot(2\pi/k)$. Since $\lim k\rho_k = \pi$ $(k \to \infty)$, we have $\alpha = \limsup kr_k \le \pi$ $(k \to \infty)$. If $\{k_n\}$ is any sequence such that $\lim k_n r_{k_n} = \alpha$ $(n \to \infty)$, then it follows from (1) that α satisfies (7). However a differentiation of (7) shows the left-hand side to be a monotonic decreasing function and thus $\lim kr_k$ $(k \to \infty)$ must exist and is the unique root of (7).

REFERENCES

- 1. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185. MR 14, 966.
- 2. J. Krzyż, The radius of close-to-convexity within the family of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 201-204. MR 26 #6384.
- 3. V. Paatero, Über Gebiete von beschrankter Randdrehung, Ann. Acad. Sci. Fenn. Ser. A 37 (1933), 9.
- 4. B. Pinchuk, A variational method for functions of bounded boundary rotation, Trans. Amer. Math. Soc. 138 (1969), 107-113. MR 38 #6042.
 - 5. M. O. Reade, Ann. Polon. Math. 20 (1968), p. 317, problem 5.
- 6. A. Rényi, Some remarks on univalent functions, Bulgar. Akad. Nauk. Izv. Mat. Inst. 3 (1959), no. 2, 111-121. MR 22 #773.
- 7. M. S. Robertson, Coefficients of functions with bounded boundary rotation, Canad. J. Math. 21 (1969), 1477-1482. MR 41 #458.

DEPARTMENT OF MATHEMATICS, MANKATO STATE COLLEGE, MANKATO, MINNESOTA 56001

DEPARTMENT OF MATHEMATICS, MARQUETTE UNIVERSITY, MILWAUKEE, WISCONSIN 53233