ON CLOSED CURVES IN MINKOWSKI SPACES

H. S. WITSENHAUSEN

ABSTRACT. The minimum pseudo-diameter d and the length L of a simple closed rectifiable curve in Minkowski space satisfy $L \ge gd$ where g is the half-girth of the unit ball. The bound is sharp.

This note answers some of the questions raised by H. Herda in [1].

Let M be a Minkowski (finite dimensional real Banach) space with unit ball B. Let γ be a simple closed rectifiable curve in M. For x on γ let x' be the point whose distance along γ to x is half the length $L(\gamma)$ of the curve γ . Let $d(\gamma) = \min_{x \in \gamma} ||x - x'||$ and let g be the half-girth [2] of g, that is, the shortest length of a curve on ∂g with antipodal endpoints.

THEOREM 1. One has $L(\gamma) \ge gd(\gamma)$ for all γ and there exists a curve for which equality holds.

PROOF. Let γ be given. Choose a point a_1 and an orientation on γ . For arbitrary $\varepsilon \in (0, \frac{1}{2})$ choose an integer k > 0 such that $2^{-k}L(\gamma) < \varepsilon d(\gamma)$. Define points $a_i \in \gamma$, $i = 1, \dots, 2^k$, succeeding each other in the chosen direction with the γ -arc from a_i to a_{i+1} of length $2^{-k}L(\gamma)$. Then $a_i' = a_j$ where $j \equiv i + 2^{k-1} \mod 2^k$. Join the a_i by straight line segments in index order to form a closed polygon α . Let $r_i = \frac{1}{2}(a_i - a_i')$, $m_i = \frac{1}{2}(a_i + a_i')$.

Join the points r_i in index order to form a closed polygon ρ , centrally symmetric about the origin. By convexity of the norm one has

$$||a_{i+1} - a_i|| + ||a'_{i+1} - a'_i|| = ||(m_{i+1} - m_i) + (r_{i+1} - r_i)|| + ||(m_{i+1} - m_i) - (r_{i+1} - r_i)|| \ge 2 ||r_{i+1} - r_i||.$$

Since $||a_{i+1}-a_i|| \le 2^{-k}L(\gamma)$ for all i, one has

$$||r_{i+1} - r_i|| \le 2^{-k} L(\gamma) < \varepsilon d(\gamma).$$

By construction $||r_i|| = \frac{1}{2} ||a_i - a_i'|| \ge \frac{1}{2} d(\gamma)$. All vertices of polygon ρ are therefore on the boundary or exterior of the ball $\frac{1}{2} d(\gamma) B$. Then no point

Received by the editors November 24, 1971.

AMS 1970 subject classifications. Primary 52A40; Secondary 50C25, 46B99.

Key words and phrases. Minkowski spaces, pseudo-diameters, girth of balls.

of ρ can lie in the interior of the ball $(\frac{1}{2} - \varepsilon)d(\gamma)B$. Therefore

$$L(\gamma) \ge L(\alpha) = \sum_{i=1}^{2^{k-1}} (\|a_{i+1} - a_i\| + \|a'_{i+1} - a'_i\|)$$

$$\ge 2 \sum_{i=1}^{2^{k-1}} \|r_{i+1} - r_i\| = L(\rho) \ge (1 - 2\varepsilon)gd(\gamma)$$

where g is the half-girth of B, the last inequality by Lemmas 3.2 and 5.1(a) of Schäffer [2]. This proves that the inequality holds. By Lemma 5.1(b) of [2] there exists a curve γ on ∂B , centrally symmetric about the origin, for which $L(\gamma)=2g$ and, trivially, $d(\gamma)=2$, yielding equality.

REMARKS. 1. In infinite dimension the same argument applies but a curve yielding equality may not exist.

- 2. In 2 dimensions, $L(\gamma) = gd(\gamma)$ does not imply that γ is a homothet of ∂B . When the unit ball is a square, an infinity of curves exists which have $L(\gamma) = 8$, $d(\gamma) = 2$ and up to twice the area of B.
- 3. For Euclidean and Hilbert spaces R. Ault has shown [4] that $L=\pi d$ only for circles, settling Herda's conjecture in the affirmative. An earlier partial proof for E^2 was provided by A. M. Fink [3].
- 4. Herda's second conjecture states that for a simple closed rectifiable curve γ in E^2 the following are equivalent:
 - (i) the curve admits a unique tangent at each point;

(ii)
$$\inf_{t \in (0,d)} \max_{x \in y} a(x,t)/t = 1$$

where a(x, t) is the shortest arc length from point x, in a fixed orientation along γ , to a point of γ at Euclidean distance t from x. This conjecture is false. Let γ_1 be the graph in E^2 of the function f defined on [-1, +1] by f(0)=0, $f(x)=x^2\sin x^{-1}$. Complete γ_1 into a simple closed curve γ by a smooth connection of its endpoints. Then γ is rectifiable and has a unique tangent at each point while (ii) fails because

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_0^\varepsilon (1 + \cos^2 t^{-1})^{1/2} dt > 1.$$

REFERENCES

- 1. H. Herda, A conjectured characterization of circles, Amer. Math. Monthly 78 (1971), 888-889.
- 2. J. J. Schäffer, *Inner diameter*, perimeter, and girth of spheres, Math. Ann. 173 (1967), 59-79; addendum, ibid. 173 (1967), 79-82. MR 36 #1959.
- **3.** A. M. Fink, A circle maximizes the minimum pseudo-diameter (written communication).
 - 4. R. Ault, Metric characterization of circles (written communication).

MATHEMATICS RESEARCH CENTER, BELL TELEPHONE LABORATORIES, INCORPORATED, MURRAY HILL, NEW JERSEY 07974