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CONTINUUM EMBEDDED EIGENVALUES IN  A
SPATIALLY  CUTOFF P(<¡>)2 FIELD  THEORY

BARRY  SIMON1

Abstract. We prove the existence of nontrivial two-dimen-

sional spatially cutoff self-coupled Boson field theory Hamiltonians

with bound states embedded in the continuum.

The development of constructive quantum field theory by Glimm and

Jaffe (and those of us who have followed in their footsteps) has raised a

large number of mathematical questions, some with answers of physical

interest—others of a purely mathematical nature. Among these is the anal-

ysis of the spectral properties of spatially cutoff Hamiltonians. In this

brief note, we wish to exhibit nontrivial examples with eigenvalues em-

bedded in the continuum.

Let H0 be the free Hamiltonian of a Bose field of mass w0>0 in two-

dimensional space-time. Let H¡2)(g) be the interaction H¡2)(g) =

J g(x):<p2(x):dx, where g is a smooth function of compact support with

Orsg^l. If X>-ml, the model Hamiltonian H™(g)=H0+XHI2)(g) is

exactly solvable in the sense that it is unitarily equivalent to dV(A)—Eg

for a suitable operator/I. Here dT(-) is the biquantization of ■. a symbolism

introduced by Segal and discussed in [1]. A variety of authors (see [2] and

references quoted therein) have discussed this model. Rosen [2] has anal-

yzed the spectrum of H{2)(g) completely. One feature is that in some cases

with X<0, Hm(g)has eigenvalues E>mf) — EIJ embedded in <fc„nt(Hi2)(g)) =

(m0—Eg, oo). These eigenvalues are states of two or more "dressed

excitations". They seem to be artifacts of the linear nature of the equation

of motion which leads to noninteracting excitations. As soon as one

turns on any interaction of nontrivial nature, the excitations interact and

one would expect these continuum embedded eigenvalues to dissolve. We

think that this expectation is basically correct and in particular that there

are no eigenvalues in (2m0 — Eg, oo) after an additional nontrivial inter-

action is turned on. What we wish to show is that some of the eigenvalues

will remain because of a very simple mechanism.
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This mechanism is suggested by an analogy with the nonrelativistic

Helium atom Hamiltonian in the limit of infinite nuclear mass and no

Coulomb repulsion between electrons. The Hamiltonian in that case is

just

H0 = -A, - A2 - 2/r, - 2/r,

on L2{R6) and is exactly solvable. There are a continuous spectrum in

(—1, oo) and eigenvalues at £„.„, = — 2\n2 — 2\m2. If«, m>\, these eigen-

values are above the continuum limit. If one turns on a Coulomb repulsion

—ßl\r1—r2\ between the electrons, i.e. if one looks at H{ß)=H0+ßV, one

expects these eigenvalues to dissolve. A mechanism for proving this for

most of the levels has recently been developed [3], but certain levels do

not dissolve. Let '/(\n) be the subspace of L2(R6) of states of natural parity,

i.e. the subspace spanned by those simultaneous eigenvectors of total

angular momentum J and total parity P obeying (— ])J=P. Let J^iu) —

Jfi1n> be the states of unnatural parity. Both H0 and H0+ßV leave Jt(n)

invariant, //„f^,,, and H0 + ßV[ •#,„, have continuum [—1, oo) (if/Sis

small) but H0\,#Ul) and Ho+ß^\-^u,) have continuum only in [ —¿, oo).

Any E„ m with «=2, m^.2 has an associated eigenvector (of//„) in ^(u).

These eigenvectors of unnatural parity in (—1, —i) do not dissolve if ß

is small. In fact, it can be proven ([4], [5]) that the physical value ß=\

leads to an infinite number of eigenvalues in (—1, — j).

In our field theory case, we only need to find the appropriate symmetry

to replace ( — \)JP. The right choice is (— 1)A where .V is the number

operator. (One can replace N with the dressed number operator Ng since

(-1)A'=(-1)A< ) Our result then is:

Theorem. Let g. a smooth function of compact support on R, be given.

Let P{X) = a.,1„Xi"'+a2m .2A'2"'~2-|-- • - + a0 be an even polynomial with

a2m>0 and m^2. Let H¡2m>{g) = $g{x):P{4>{x)):dx and let H{g,X,ß) =

Hn + XH\2>{g) + ßH{2m)(g). Then there is a A>0 and a B for each X with

0>/!>— A so that H{g, X, ß) has eigenvalues in the continuum ifO<ß<B.

Proof. (1) The Fock vacuum Í20 is an analytic vector for Hi2){g).

This follows from a simple application of Nr estimates [6].

(2) Let F<2) be the function on Q space ([1], [6]) with H{2) multiplication

by V{2}. Then e* ' c L1{Q, dp) if \s\ is sufficiently small. For (1) implies

that 2Zn "o, //o'"iV-s2700!<oo if í is small so that

J^{s'"lm\) \\V\mdp < oo
ra=0 J

if s is small. The monotone convergence theorem then implies e+s|r| e L1

if |s| is small which proves (2).
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(3) There exist p<2<q and A>0 so that H0+XH(f>(g)=H'2)(g, X) has

the following properties if 0>A>—A:

(a) {e~tH}t>0 is an exponentially bounded semigroup on each Lr with

p<r<q.

(b) For some 7>0 and some r with 2<r<q, e~TH is a bounded map of

L? into U. These results follow from (2) by a simple application of the

method of hypercontractive semigroups ([1], [7]).

(4) As ß-*0 (ß real), H(g, X, ß)^H(g, X, G)=H{2)(g, X) in norm ré-

solvant sense if 0>/l>—A. Given (3), this is also a simple application of

the methods of hypercontractive semigroups.

(5) Let T„,x be Rosen's dressing transformation [2] so that Hi2)(g, X)=

Tdr(fit)T-1-Er Let Na=TNT-\ Then (-l)iV'=(-l)v. This follows
from the fact that T commutes with (— 1) by its explicit form given

in [2].
(6) Let ¿Fe be the set of all vectors in & with an even number of particles

and let !F'0=5F^ be the set of vectors with an odd number of particles.

TtJ, H0, H{2)(g, X) and H(g, X, ß) all leave J^ and &, invariant since they

all commute with (— l)jV.

(7) pg=( — A+ml + Xg(x))1/2 has at least one eigenvalue in (0, m0) if

—A<2<0andg#0. This is a basic property of one-dimensional quantum

mechanics, that — A+ V has a negative eigenvalue if V is nonpositivè and

goes to 0 at infinity. (This property follows from comparison with a square

well.)

(8) Let e0<m0 be the lowest eigenvalue of pr By decreasing'A if

necessary, suppose e0>w0/2. Hl2)(g, X)\¿F0 has continuous spectrum

(m0— Ea, oo) while Hvl)(g,X)\¿F e has continuous spectrum (m„+e0—Eg, oo).

Hi2)(g, ?.) has an eigenvector in ¡Ft with eigenvalue 2en — E,r

(9) By (4), for ß small (ß>0), H(g, X, ß) has an eigenvector in !Ft with

eigenvalue larger than i(m0+2e0) — Ea, and the lowest (vacuum) state of

H(g, X, ß) has energy smaller than (e0—|/w0)—£„.

(10) By a result of Hoegh-Krohn [8], H(g, X, ß) has continuous spec-

trum in (L, oo) with X smaller than 2(m0 + 2e0) — Eg.

(11) Thus for ß small, H(g, X, ß) has an eigenvalue embedded in its

continuum.    Q.E.D.

These continuum embedded eigenvalues are present for a simple reason

but they indicate how difficult it will be to control the point spectrum of

spatially cutoff />(</>).,-Hamiltonians. For example, we expect that there will

be no eigenvalues above the continuum limit in ¡Fe— the analogous con-

jecture can be made for the Helium atom, i.e. no eigenvalues above — \.

It is still an open question whether the Helium atom Hamiltonian has any

eigenvalues in (—¡. 0) and the difficulty of this question bodes ill for the

analogous P(<f>)2 question.
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