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WEAK  PARTITION  RELATIONS

ANDREAS BLASS

Abstract. The partition relation Ri-*0*i)ï,a, which was known

to contradict the continuum hypothesis [1], is disproved without

this hypothesis.

For cardinals k^.co and X>1, let P{k, X) be the following partition

relation: For any mapping F of the set [k]2 of unordered pairs of ele-

ments of k into X, there is a set B<=,k, of cardinality \B\ = k, such that the

image of [B]2 under F is not all of X. Such a set B will be called slightly

homogeneous for the partition F. Partition relations of this sort were

studied by Erdös, Hájnal, and Rádo [1, especially §18], who assumed,

in most of their theorems, that the continuum hypothesis holds. We shall

show that F(X,, 3) can be disproved outright (in Zermelo-Frankel set

theory ZF with the axiom of choice).

Notice that, for X^p, P{k,X) implies P{k,p). For, given a map

F:[k]2-+u, we let G:[k]2->-X be the composite of F and a surjection

p—-X and observe that any set which is slightly homogeneous for G is also

slightly homogeneous for F. Thus, for a fixed k, the partition relation

P{k, X) becomes weaker as X increases. Using this fact, we easily obtain

the following lemma by induction on m.

Lemma 1. If n^m<(» and if P(k,ii), then, for any map F:[i<]2-+m,

there is a Bç: k with \B\ = k and \F([B]2)\<n.

When X>k, then P{k,/.) is trivially true, because k itself is slightly

homogeneous for any F. At the other extreme, P(k, I) is trivially false.

For finite X, P{k, X) coincides with the partition relation «"-*(*);" ¿-i °f

Kleinberg [3]. In particular, P{k, 2) holds if and only if k is (strongly)

inaccessible and weakly compact [5, Theorems 8.3 and 9.4], so it is

relatively consistent with ZF to assume that P{k, 2) holds only for k=co.

{P{(o, 2) is a form of Ramsey's theorem [6].) On the other hand, one can

prove the existence of uncountable k such that P(k, 3). Indeed, for singular

k, P{k, 3) holds if and only if« is a strong limit cardinal and P{cf{x), 2),

so, for example, FQW, 3) holds.
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If we assume the generalized continuum hypothesis, then the question

whether P(k, X) holds or not is completely answered for successor

cardinals by the following result of Erdös, Hájnal, and Rádo [1, Theorem

17].

Theorem 0.   lf2K=K+, then not P(k+, k+).

Corollary.   If2K — K+, then P(k+, X) if and only ifX>Ki.

We shall prove the following theorem, which becomes a special case

of the above corollary if one assumes the continuum hypothesis.

Theorem 1.   Not P^, 3).

This theorem has subsequently been improved by Galvin and Shelah

[2] who have shown that -P(Ni, 4) is also false. Their proof is quite similar

to my proof of Theorem 1 ; in fact both proofs use the same partition. As

far as I know, the consistency of/"(S,, 5) is still an open question.

The first (and longest) part of the proof of Theorem 1 will be the

construction of three linearly ordered sets, each of cardinality X,, such

that no uncountable subset of any of the three is isomorphic or anti-

isomorphic to a subset of any other. One of the three sets will be Xx

with its standard ordering (as an ordinal). Before describing the others,

we introduce some terminology.

Definition. A subset A' of a linearly ordered set Y is pseudo-dense in

Y if it meets every half-open interval [a, b) of Y.

Lemma 2.    There is a linearly ordered set A of cardinality X, such that

(a) There are no monotone (increasing or decreasing) sequences of

length Xx in A.

(b) For every subset Y of A there is a countable subset X of Y which is

pseudo-dense in Y.

(c) A is isomorphic to its dual A*.

Proof. Notice that any subset Y of the real line has the property

required in (b). The required X is obtained by choosing one element

from each nonempty intersection YO(p, q) of Y with a rational interval,

subject to the restriction that, if such an intersection has a largest element,

then that largest element is to be the chosen one. If [a, b) is an interval

of Fand there is a c e Y strictly between a and b, then, for rationals/», q

such that a<p<c<q<b, the chosen element of Yn(p, q) is in [a, b)nX.

On the other hand, if no such c exists, then, for rationals p, q such that

p<a<q<b, the intersection Yn(p,q) has a largest element, namely a,

so a e [a, b)C\X. Thus, X is pseudo-dense in Y.
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It follows that any symmetric subset A of the reals satisfies (b) and (c).

Property (a) follows from (b) and (c) since Xx has no proper pseudo-

dense subset. As we can obviously choose such an A of cardinality X,,

the lemma is proved.    □

The A provided by Lemma 2 will be the second of our three sets. To

describe the third, we shall need some facts about trees.

A tree is a partially ordered set (F, <) such that, for each x e T, the set

{j;|y<x} of strict predecessors of x is well-ordered. The height h{x) of x

is the order type of {>'|>'<x}, and the height h{T) of T is the least ordinal

not of the form h{x) for any xeT.lf a.^h{x), then pa{x) is the (unique)

predecessor of x of height a, the ath element of {y|>'^x}. The ath level

of T is {x\h{x)=a}. A path through F is a linearly ordered subset of T

which meets the ath level for all a</?(F).

Suppose (F, <) is a tree and <' is a linear ordering of T (which may

be totally unrelated to the tree ordering <). If x and y are incomparable

elements of F (with respect to <) and a is the smaller of their heights, then

clearly px{x)9épx{y). Let ß be the least ordinal such that pß{x)^pp{y). We

shall say that x is left of y (and y is right of x) if pß{x)<'pß{y). We define

a relation < on F by

x < y   iff   x < y or x is left of v.

The straightforward proof of the following lemma will be left to the

reader.

Lemma 3.    With the notations introduced above, < linearly orders T.    □

We shall need the following result of Aronszajn; see [4] or [7] for a

proof.

Lemma 4. There is a tree of height Hx such that all its levels are countable

and there is no path through it.    □

Finally, we are ready to produce the third of our linearly ordered sets.

Lemma 5.    There is a linearly ordered set B of cardinality Xj such that

(a) There are no monotone sequences of length Xj in B.

(b) No uncountable subset of B has a countable pseudo-dense subset.

Proof. Let (F, <) be a tree with height X,, countable levels, and no

paths, as in Lemma 4. Note that then |F| = X,. Let <' be any linear

ordering of T, and let -< be as in the discussion preceding Lemma 3.

We shall show that (F, -<) has both the properties required of B.

(a) Suppose {xa|a<X1} were a monotone sequence of length X, in

(F, -<). As each level of T is countable, we see that, for each y<X!,

the set Umv)=/ (z|z=.y} contains uncountably many x,'s. As there are only
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countably many terms in this union, there must be ay, of height y, such

that uncountably many xa are ïïy.

I claim that, for each y, there is only one such y. Supposey' were another,

and suppose, without loss of generality, that y' is left of y. Then we can

successively choose £, //, £<Ni such that

Ç<r) and x,>.y',

7]<t, and x^y.

It is easy to check that then xn is left of both x* and xr, so xn<xt, .x?

whereas £<?/<£. This contradicts the monotonicity of {.vCI|a<X1J.

If y is 5= uncountably many .v^'s, then so are all its predecessors. Hence,

these y's form a path, contrary to the choice of T.

(b) Suppose X'Z K£ T, \X\ = Xa, | F| = N,, and X is pseudo-dense in 7.

The countable set \h(x)\x e X) is bounded above by an ordinal oc<N,.

All but countably many elements of Y are in Uä(«>~« ui-Vä^}» s0 tnere >s

a z of height a such that two distinct elements of Y are 2:z. Let a and b

be such elements, and let a<b. As X is pseudo-dense in Y, there is an

x e X such that a<x <b. If x<b, then, as z^b and z has greater height

than x, we find x<z^a, so v<a, a contradiction. So x must be left of b;

that is, if ß is the least ordinal (^h(x)) such that pß(x)^pit(b), then

Pß(x)<'pß(b). But, as ßg:h(x)<x, we see that pß(b)—pß(z)=pß(a), and /3

is also the least ordinal such that pß(x)^pß(a). Thus, x is left of a, so

x <a, a contradiction.    □

Let (A, < ,) and (B, <,,) be as in Lemmas 2 and 5, respectively, and

let < be the usual ordering of N^ Let/: X,-->A and g: X, *B be bijections,

and let h'.A ^A be an anti-automorphism of (A, <_4) by Lemma 2(c). Let

F: [N,]2-^4 be as follows. If a</3<K1, then

/•>, p) - 0 if/(a) <..,/(/3) and g(x) <„g(ß),

= 1 if /(a) <,,/(£) and g(a) >n g(ß),

= 2 xff(x)>Af(ß)andg(x)<ltg(ß),

= 3 if/(a) >.,/(/?) and/?(a)>W(?(,T)

If /"(Ni, 3) were true then, by Lemma 1, there would exist CS NT such

that |C| = X, and F([C]2) is included in a two element subset S of 4. If

5={0, 1} or S—{2, 3}, then/maps C monotonically into A, contrary to

Lemma 2(a). If .S'={0, 2} or S={1, 3}, then g maps C monotonically into

B, contrary to Lemma 5(a). If 5={0, 3} then gf1 maps the uncountable

set/(C)ç/f isomorphically to g(C)<=B, while if S={\, 2}, then gf~lh

maps h~lf(C) isomorphically to g(C). In either of the last two cases, an

uncountable subset of A is isomorphic to an uncountable subset of B. A

glance at Lemmas 2(b) and 5(b) shows that this is impossible. Each choice
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of S has led to a contradiction, so F(Xl5 3) cannot hold. Theorem 1 is

proved.    □

Theorem 1 can be generalized to apply to certain cardinals larger than

Xx. An analogue of Lemma 2, with "k" in place of "X^' and "of cardinality

<k" in place of "countable", can be proved for any k provided there

exists p<cf{K) such that /c^2". The role of the real line in the proof of

Lemma 2 is played by the lexicographic ordering of "2 for the least such

p, and the role of the rationals is played by the subset of "2 consisting of

ultimately constant functions. A similar analogue of Lemma 5 can be

proved provided k is regular and the analogue of Lemma 4 holds. Thus,

we can obtain the following result.

Theorem 2. If k is regular and accessible, and if there is a tree of height

k with levels of cardinality <k and without paths, then not P{k, 3).
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