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ON AN INDUCTION THEOREM FOR RELATIVE
GROTHENDIECK GROUPS1

WILLIAM  H.  GUSTAFSON

Abstract.   We present an improvement in the proof of Dress'

induction theorem for relative Grothendieck rings.

1. Introduction. Let G be a finite group, It a collection of subgroups

of G and R a commutative ring with identity element. Let 93Í denote the

category of finitely generated (left) modules over the group ring RG. For

M e obj(93(), let [M] denote the isomorphism class of M. Let A denote the

free abelian group generated by all [M], M e obj(93î), and let B denote

the subgroup of A generated by all [M] — [M'] — [M"] such that there is

an exact sequence

0^ M' ^ M -* M" -^0

in 9JÎ which splits upon restriction to RH for each H e It. The quotient

group A/B is the relative Grothendieck group of RG relative to U, denoted

by aR(G, It).

Dress [2] has given some induction theorems for aR(G, It), in the spirit

of Artin's induction theorem for rational characters of G. Dress' results

depend on a crucial proposition which is proved with some difficulty.

In this note, we show that the proposition follows readily from [4],

provided that the ground ring R is an algebra (not necessarily faithful)

over the ring of /?-adic integers. Thus our proof is applicable to the

important modular case.

2. The main proposition. By a G-set, we mean a finite set on which G

acts from the left by permutations. Every G-set can be written uniquely

as a disjoint union of sub-G-sets on which G acts transitively. Further,

if 5 is a transitive G-set, then S is isomorphic (in the category of G-sets

and G-equivariant set maps) to a G-set of the form G/H, i.e., the collec-

tion of left cosets of a subgroup H of G, with the natural action of G.

For any G-set S, we may define a finitely generated left RG-module

RS as follows: RS is the free /î-module with S as basis, and with action

of G determined by the G-set structure of S. In particular, if S=G with
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action given by left multiplication, then RS^RG as left ^C-modules. If

S consists of one element, with each element of G acting as the identity,

then RS is just the trivial representation of G over R. The proposition of

Dress to which we have alluded above is

Proposition 1 (Dress [2, p. 93]). Let R be any commutative ring with

unit, let G be an elementary abelian p-group of type (p, p) and let H be a

subgroup of G of order p. Then the following relation holds in aR(G, H)

(=aR(G,{H))):

P-[R] + [RG] = 2 IR(G/V)],

where the sum on the right extends over all the subgroups V of order p in G.

Dress' proof requires a detailed and delicate analysis of the structure

of RG- and RH-modu\es.

3. Proposition 1 when R is a /7-adic algebra. In this section we prove

Proposition 1 in the case where R is an algebra over the valuation ring

Z* in the/7-adic completion of the rationals. It is clear that we may assume

that R=Z*, and that aR(G, H) is calculated from the category of RG-

lattices (i.e. finitely generated left /ÎC-moduIes which are free as R-

modules). This calculation has been given in detail in [4]; let us recall

what was found there. We present G as (a, b\av = bp=[a, b] = \). Without

loss of generality, we may take H=(a). Denote by C the companion

matrix of the cyclotomic polynomial <3>V(X). Thus

0

0

0

c =

a (p— \)x(p— 1) matrix. The /^-irreducible RG-\a tices are the trivial

lattice T^R and lattices W, X0,

sentations as follows:

, Xp_x  which  afford matrix repre-

sa

Xk:a

•Mj)-l)X(j)-l)>

c,
b

b

C,

Ck (k = 0, ■ I).

Then aR(G, H) is a free abelian group with basis [T], [IV], [X0], ■ • ■ ,

[^»-iL [(^o> T)], where (X0, T) is a certain extension of X0 by Tdescribed
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in detail in [4]. We define certain group homomorphisms as follows:

ir:aR(G, H) - aR(G, {1}), ir[M] = [M],

l:aR(G, {1}) — aR(G, H),X[I] = [/]   for / /{-irreducible,

res^G, H) -* aR(H, H), res[M] = [MH],

<p:aR(G, H)^aR(G, 1) © aR(H, H), <p[M] = (w[M], res[M]).

For any /?G-lattice M, define tM e aR(G, H) by

tM = kn([M]) + v ■ ([X0, T] - [X0] - [T]),

where v is determined by

(1) res[M] = v [RH] + a- [A] + b ■ [B],

A = R and B=R[l1'»] being the irreducible /{//-lattices.

Proposition 2.   For any RG-lattice M, tM= [M] in aR(G, H).

Proof. Assume res [M] is given by equation (1) above. By the proof

of Theorem 4.7 of [4], cp is a monomorphism. Hence it suffices to show

that 7r[M]=7r(ím) and res[A/]=res tM.

Suppose that Tr[M] = t[T] + 2 xdXi\ + w Wl Then Xtt[M] is given

by the same formula, but lies in aR(G, H). Recalling that TH^A, X^j^B

and WH^A®- ■ -®A (p—\ copies), we see that

MH £* v ■ RH + ( -v + 2 x¡)B + (t - v + (p - \)w)A.

By (1) and the Krult-Schmidt theorem for /{//-lattices (see [1, Theorem

76.26]), we have

b = — v + 2 xu       a = t — v + (p — ])w.

We also have

n(tM) = ttXtt([M]) + v ■ rr([(X0, T)] - [X0] - [T]) = n([M]),

since clearly ir([(X0, T)]-[Xo]-[T])=0.

On the other hand,

res tM = res Xir[M] + v ■ ks([(X0, T)] - [X0] - [T])

= res(i[r] + 2 x,[Xt] + w[W\) + v ■ ([RH] - [B] - [A])

= (t-v + (p- \)w)[A] + [-v + 2 xt)[B\ + v ■ [RH]

= a[A] + b[B] + v[RH] = res[A/],

whence the proposition is established.
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Corollary.   In aR(G, H), we have

[RG] + p[R] = [T] + (1 - p)[X0] + 2 [X,] + [W] + p • [(X0, T)].

Now we will use Proposition 2 to calculate the right-hand side of the

equation in Proposition 1. Let Hk= (akb), for k= 1, • • • , p. Then a full set

of subgroups of order p is H, Hx, • ■ ■ , Hv. The cosets of H are H, bH,

b2H, • • • , i"-1//, from which we see easily that R(G/H) affords the

matrix representation

0  0-   ■   -or

'vXv

t0   0    •    •    ■    1    0i

By a change of basis, this representation may be brought to the form

/ 1
'j)Xp>

0 c
Hence we have

res[R(G/H)]=p[A], An[R(G/H)] = [T] + [W].

The cosets of Hk are Hk, aHk, • • • , ap~1Hk, and one has a'b> e ai~k'Hk.

From this it follows that R(G/Hk) affords the matrix representation

a^Y, b-*rp-k where

F =

0   0

By change of basis, F may be transformed to

/ 1

i>Xp

0 c
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and the same basis change transforms T"-* to

(--)■\   0     C~kJ
Thus we see that

res[R(G/Hk)] = [RH],       An[R(G/Hk)] = [T] + [Xv_k].

Thus it follows from Proposition 2 that

2 Wfi/V)\ = [T] + [W] + p- ([(X0, T)] - [X0] - [T])
WUv v-l

+ PIT] +2 [Xt]
¿=0

= [T] + [W] + p[(X0, T)] + (1 - p)[X0]

+ 2 m

We may now deduce Proposition 1 by comparing equation (2) and the

Corollary to Proposition 2.

4. Descending to the integers. It would be pleasing to use this method

to obtain the full force of Proposition 1. In order to do so, it would suffice

to handle the case in which R is the ring Z of rational integers. Dress [3,

Satz 1] has shown that, for the localization Zv of Z at p, the map

az(G, U)^-az*(G, U) induced by the completion functor is monic. Hence

our proof transfers to azJfi, U). (Indeed, most of the results of [4] can

now be taken with coefficients from Zp.) Dress has further indicated to

me in a private communication that he has a method of descent from Zp

to Z. This method will be discussed in his forthcoming lecture notes from

Universität Bielefeld.
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