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EVENTUAL D1SCONJUGACY OF SELFADJOINT FOURTH
ORDER LINEAR DIFFERENTIAL EQUATIONS

G.  B.   GUSTAFSON

Abstract. At the 1969 Differential Equations Conference held

at Knoxville, Tennessee, Z. Nehari asked the following question

about fourth-order selfadjoint linear differential equations:

"Assume that solutions of the equation have only a finite number

of zeros on t^.A. Does there exist a half-line on which no solution

of the equation has more than three zeros ?" In this paper sufficient

conditions are given for the equation (p(t)y") + (q(t)y')'=0 to have

the property that solutions possess only a finite number of zeros.

This theorem is then used to construct an example which answers

the above question in the negative. The example also shows that if

on each half-line the equation has a solution with two consecutive

double zeros, then it need not follow that there is a solution with

infinitely many zeros.

1. Introduction. The general fourth-order selfadjoint linear differential

equation

(1.1)        (py")" + (qy'Y + ry = 0,       p, q, r in C[A, oo), p > 0,

has received considerable attention since the appearance of Leighton and

Nehari's fundamental paper [6] in 1958. If some nontrivial solution of (1.1)

has an infinity of zeros, then (1.1) is called oscillatory; in the contrary

case (1.1) is called nonoscillatory. The equation is called disconjugate on a

set E provided the number of zeros of a nontrivial solution is less than the

order of the equation; eventual disconjugacy is disconjugacy on some half-

line.

A substantial percentage of known oscillation theorems use the follow-

ing scheme: nonoscillation—►eventual disconjugacy—>-a coefficient con-

dition. The defect in this scheme for higher order equations is the first

implication: it only holds for special cases; see [2].

The question of the equivalence of nonoscillation and eventual

disconjugacy makes sense for all linear differential equations, but the

selfadjoint case is the most logical generalization of the Sturm theory;

hopefully, this equivalence should generalize to selfadjoint equations.
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It does indeed generalize to third-order equations, but it fails for

fourth-order selfadjoint equations, as will be seen below.

The purpose of this paper is to answer in the negative the following:

Assume that each solution of (1.1) has only a finite number of zeros on

t^.A. Does there exist a half-line on which no solution of (1.1) has more

than three zeros ?

Suppose that on each half-line equation (1.1) has a solution with two

consecutive double zeros. Does (1.1) have a solution with infinitely many

zeros?

The/rth conjugate point belonging to t—a is denoted by r¡Pia), and equals

the minimum of the set of all by a for which the equation (1.1) has a so-

lution with a zero at t=a and/? + 3 zeros on a^t^b, counting multipli-

cities. In [10] it is proved that this minimum exists provided there exists a

solution yiO^O that vanishes at t=a and has at leastp+3 zeros on t^a,

counting multiplicities.

2. Theorem. The equation ipy")" + iqy')'=0 is nonoscillatory on t^A

if (ry")''+?/—® nas tw0 solutions Uand Vsuch that

(i) lim,^ U(t)= ao, lim,^, F(r)=co,

(ii) lim^ iUit)lVit))=0,
(iii) &U'(s)V(s)ds¡V(t)=0(l).

Proof. The function w(t)= -í/(0F(í)+2 ¡lA U'is)Vis) ds is a solution

of the fourth-order equation independent from 1, U, and V. If

yit) = C, 4- C2Uit) + C3Vit) + C4u(0,       t ^ A,

vanishes infinitely often on t^A, then the equation

0 = — + C2— +C3- CtUit) 4- 2C4(    U\s)Vis) ds) /V(t)
Vit) Vit) \Ja II

has a solution / on every half-line. The right side of this equation is

dominated by — C4t/(<) for C4?^0; therefore, C4=0. Letting <->-oo and

applying (ii) gives C3=0. Then C1 + C2U(t)=0 has a solution t in every

half-line; by (i), C,=0, and finally C,=0. Hence y=0, and the equation

is nonoscillatory on t~¿.A.

Remark. The referee has kindly pointed out that 0(1) in (iii) can be

replaced by oiWit)).

3. A nonoscillatory equation (1.1) that is not eventually disconjugate.

Let ipz')'+qz=0 be the equation (see [3]) whose fundamental solutions

are

u = \\t + sin r,       v = e + cos t.
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The Wronskian of v and u is W(v, u)=l+e cos t — (llt2)(e+cos t)+

( 1 It)sin t ; so there is a number A > 0 and a number s > 0 such that W(v, w) >

0 for tcZA. Therefore, (pz')'+qz=0 is a nonsingular linear differential

equation on t^.A with C00 coefficients.

Define U(t)=\og r-cos r, V(t)=et+sin /. Then U'=u, and V'=v.

Hence, 1, U, V form a fundamental set of solutions for the nonsingular

third order linear differential equation (py")'+qy'=0. Furthermore,

U(t)
lim U(t) = co,       hm V(t) = oo,   and    lim- = 0.
í-»0O «-CO Í-0O   F(í)

In addition,

fW)K(s) ás/nO = (" + *-"c0r + O(l) = 0(1)
Ja I et + sin í

Therefore, (i)-(iii) of Theorem 2 hold. The equation (py"f+(qy')'=0

will be modified on a "small" set to obtain the example.

Let [a0, b0], [alt bx], [a2, b2], • • • be disjoint intervals in [A, oo) such

thato0=^, bn<an+1, w^O, lim,,^«, a„ = oo, and 2ñ-o S% tdt<co.

Put Jn= [an, bn], n^O, and let J equal the union of all the J^s. Suppose

it is possible to find C4 functions u*(t), v*(t) which are fundamental

solutions of a second order equation (p*z')'+q*z=0 on t^.A such that

u*=u and v*=v off J, \u*\£l + \u\, |»*|<1 + |»| on J,

*, -, rvn(t-cj » mr(t - c„)
it (t) = cos —- ,        v (t) = sin —- ,

(dn - cn) (d„ - c„)

on an interval [cn, dn]<=(an, bn), w^l. It will be shown that (p*y")" +

(q*y')' = 0 is nonoscillatory on t~^.A and every number a~iA has a /7th

conjugate point, p?t 1.

For this purpose, define

U*(t)= V(t) + (\u*(s) - u(s))ds

and

V*(t)= V(t) + \ (v*(s)- v(s))ds.

Then surely 1, V*, U* are linearly independent solutions of (p*y")" +

(<7*y)' = 0. It will be demonstrated that <7* and V satisfy (i)-(iii) of

Theorem 2.

Because v*=v and u* = u off J, V*=V+0(\) and U* = U+0(l).

Therefore, (i) holds. Since U* = 0(\ogt), (ii) holds. To establish (iii),
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calculate

i U*'(s)V*(s) ds/v*(t) = f u*(s)V*(s) ds/v*it)

■*(s)- u(s))V*(s) ds /

+ iuis)Vis)dslv*it)

+ i'uis)iV*is) - Vis)) d

=J>

-Í0(1)0(5) ds/v*(t) + -
J   ^ '   "'     / ■    w   ■   r/*(f)

+jO(l)ds/v*(t) = Ó(í).

Therefore, t/* and V* satisfy (i)-(iü) of Theorem 2. Accordingly, the

equation ip*y")"+(q*y')'—0 is nonoscillatory on t^A.

Suppose a e [A, oo). It will be shown that each pth conjugate point

r¡Pia) exists, p^l. Given an integer p^.1, select an integer n such that

an>a,n>p+3. Define A:(í)=/i7r(í — c„)/(Jn — cn) and suppose that U*(t) —

/i1sin/£:(i)4-C1, V*it)=h2cos kit)+C2, on cn^t^.dn. Select constants mx

and m2 not both zero such that m1[U*ià) — C1] + m2[V*ià) — C2]=0. Put

yit)=m1U*it) + m2V*it)—m1Cl—m2C2. Then v-(f) is a nontrivial solution

of ip*y")" + iq*y')'=0, y(a)=0, and;;(/)=Wi^i sin kit) + m2h2 cos &(/) on

cn^t^drr Because yit) has at least/?-(-3 zeros on the interval a^t<dn, a

standard theorem on conjugate points (see [4], [10]) shows that r¡Pia)

exists. Furthermore, a constant can be added to yit) so that the solution

so obtained has p + 3 double zeros on cn^t^dn.

The equation (py")" + iqy')' = 0 is nonoscillatory, but not eventually dis-

conjugate. Furthermore, given any half-line t^.T, and any integer N>0,

there is a solution of the equation with N consecutive double zeros. There-

fore, the equation is not disconjugate in the sense of Reid (see [9], [10]).

To establish the existence of the special functions u* and v*, the

following lemmas will be used:

4. Lemma. Let xit) and yit) be solutions of ipz')'-\-qz=0 such that

x(F) = 0, x'(F)>0, v(F)>0, and suppose Git) is the solution of

y(T)x'iT)
G(t) = -  , ',        G(F) = 2fc7r,



1972] SELFADJOINT LINEAR  DIFFERENTIAL  EQUATIONS 191

where F2(t)=y2(t)+x2(t), and k is an integer. Then x(t)-F(t) sin G(t) and

y(t)=F(t) cos G(t) for t^T.

5. Lemma.    Given an integer A/>0, there exists an r(i) in Cx[c, d] such

that

(i) r(c) = 0,r(d)=l,

(ii) r'(t)>0on(c,d),

(iii) r'(t) has a zero of order TV— 1 at t = c and t — d (see [4]).

6. Lemma.    Suppose E is connected, [c, d]^E, /,, f,, gu g2 £ CN(E),

f2Át)g[(t)>0,ft(t)g2(t)>0 on E. There exist functions}, g E CN(E) such that

(0 f=fx on (-oo, c]HE,f=f2 on [d, oo)n£,
(ii) g=gt (modulo2tr)on(— oo, c]n£,g=g2 (modulo 2tt) on [d, co)nE,

(iii) g'(t)^min{g[(t),gï(t)} on c^t^d,

(iv) min{/1(0,/2(0}^/(0^niax{/1(0,/2(0} on c<t^d.

Proof of Lemma 6.    Let r(t) be the function of Lemma 5. Select an

integer /c>0 such that gl(d)-^g2(c)+2kir. Define

f(t)=f1(t), t e (-co, c]nE,

= r(t)f2(t) + (1 - r(t))f(t),       c^t^d,

=/2(0, te[d, co)n£,

g(t) = gi(t), te(-co,c] nE,

= r(t)(g2(t) + 2kn) + (1 - r(t))gl(t),       c<t<d,

= g2(t) + 2krr, t E [d, oo) n £

Then (i) and (ii) hold. On c^t^d,

fit) = r(t)f2(t) + (1 - r(t))f(t)

^ r(t)max{f(t),f2(t)} + (1 - r(t))max{f(t),f2(t)}

= max{ f(t),f2(t)};

likewise, f(t)^m\n{f(t),f2(t)}. This demonstrates  (iv). To prove (iii),

compute

g'(t) = r'(t)(g2(t) + 2kn - gl(t)) + r(t)g2(t) + (1 - r(t))g¡(t).

Since g, and g2 are increasing,

gi(t) á ?iW ^ ft(c) + 2frr ^ g2(t) + 2kn

for c^t^d. By (ii) of Lemma 5, the above formulas give

g\t) ^ r(t)g'2(t) + (1 - r(f))fi(0 ^ min{g[(t),g2(t)}.

The proof is complete.

The construction of«* and v* will now proceed. Define u* = u and i>*=

i> off the set U"=i (a,„ b„). The definition of it* and r* will be completed
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by defining these functions on each Jn, w^l. Let [cn, dn]<^ian, bn), and

put E=[bn_l, b„], [c, d] = [an, cn] in Lemma 6. Write uit)=f1it)cosg^t),

t'(')=/!(0sin gAOviaLemma4,andputf2it)=\,g2it)=n7rit-cn)lidn-cn).

Apply Lemma 6 to find functions/(/) and git) as asserted in the lemma,

and put ;(*(/)=/(,)cos£(0, v*{t)=f(t)sin g(t) on [a„,d„]. Similarly, u*

and v* can be defined on [d„, bn]. The functions tí* and v* resulting from

this construction satisfy

Wiu*it), v*it)) > 0,        |«*(i)| Ú \u(t)\ + 1,        |p*(i)| Ú If (01 + 1,

on [b„_x, anil], n^. 1, by Lemma 6. The existence of the functions u* and

v* is now established.

The example above shows that selfadjoint equations need not inherit

disconjugacy from nonoscillation criteria. Moreover, conjugate point

information is not always sufficient to determine asymptotic properties

such as oscillation and nonoscillation.

For positive results see [1], [2], [6], [7], [8], [9], [11]. Some unsolved

problems appear in [1], [2], [7].
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