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ON  THE  LOCATION  OF  ZEROS  OF  SECOND-
ORDER  DIFFERENTIAL  EQUATIONS

VADIM  KOMKOV

Abstraci. The paper considers the location of zeros of the

equation (x(t)x')' + y(t)x=0, tE [r0,/i]. The following theorem is

proved. Let [a, a + T], T=na (n a positive integer), be a subset of

[/„,)',]. Denote w=-n\T. Let the coefficient functions obey the in-

equality \%+T {y(/)-co2a(/)sin2(cü/)} dt>coíl Ç%+T {a. cos 2cot) dt.

Then every solution of this equation will have a zero on [a, a+T].

A more general form of this theorem is also proved.

0. Summary. This note provides a corollary to Leighton's variational

theorem, providing a sufficient condition for the existence of a zero on an

interval of given length for a second-order selfadjoint equation.

1. The selfadjoint linear differential equation.   We consider the equation

(1) L(x) = (a(r)x')' + y(t)x = 0,

t e [/•„, íj), a(fj e Cl[t0, tj), y(t) e C[t0, /,) C=dldt), where the possibility

r1=-f-oo is not excluded.

We wish to find an answer to the following problem. Does every

(classical) solution of (1) vanish on every interval of length T (T<

(h — 'o))? This question is not answered completely in this paper, but a

sufficient condition is given for the existence of zeros on every subinterval

°f ['o. '1) °f length T. We shall denote by oj the number: co = ir¡T.

Theorem 1. Let [a, a-\-T] be a closed subinterval of [t0, t^), where

a=nT, n an integer. Let the coefficient functions x(t), y(t) obey the in-

equality

fa+T Ça+T
(2) [y(t) - w2a(i)]sin2 cot dt — of        x(t)cos(2<ot) dt > 0.

Jfl Ja

Then every solution of (\) will vanish on the interval [a, a+T].
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Proof.   The inequality (2) states that

fa-i TrJa

[{yit) — co2a(i))sin2 cot — co2a{t)cos 2cut] dt > 0.

Integrating by parts the second term of the integrand, we have

Ça+T

(3) [iyit) - w2a(i))sin2 cot + cú«.'{t)sin{cot)cos{cot)]dt > 0.
Ja

We substitute w(/)=sin cot, setting a>2=c/a, where c and a are any suitable

positive constants. Obviously

(4) {au')' + cu = 0,

and w(rt7r/«>)=H((«4-l)7r/a))=0 for any integer n. The inequality (3) be-

comes:

,,. Jm/m      \\ a   I \ a ! )

*■ pin+Dir/m

(w • Lu) dt ^ 0.
Jnir/ü>

(See for example [2, Equation 1.16, p. 8] for details of manipulation of

equality (5).)

The inequality (5) J»1^'*'" (w • Lu) dt^.0 allows us to apply the classical

form of Leighton's variational theorem (see [1]), which concludes that

every real solution of (1) will vanish on the interval [a, a+T], completing

the proof.

Corollary 1.    Theorem 1 is valid if (2) and (5) are replaced by:

(2a) y(t) - «2a(0 ^ 0

and

fa+T
(2b) [a'(i)sin 2cot] dt > 0

Ja

on [a, a+T], or by the single condition

í*(n-rl)¡7/<o /•(n+Di/tu

(2c) (y(i)sin2 cot) dt ^ a>2 a(i)cos2(fot) dt.
Jiiir,(ji Jnvlio

Note. (2c) is obtained from (2) after a trigonometric substitution.

Corollary 2. If x(t) e C1[t0, oo), y{t) e C[t0, oo) and condition (2) ii

satisfied {or if the equivalent conditions (2a), (2b) or the condition (2c) is

satisfied), then solutions of{\) are oscillatory, and will vanish on any interval
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[Ii, i2] of length greater or equal to T, provided tf¡Lmr¡o>~^.tn for some

integer n.

Example 1.    Consider the equation

1 +
y +

\ 2¿ 1 + sin tl'
0,       0 5= t < 3tt/2,

where v>0, p^O, r/>>l and A"^l. We claim that every solution of this

equation will vanish on the interval [0, y/2tr]. We choose co=yj2/2, and

T=tt¡(ú=^2tt. Using inequality (2c), we compute

r-\Lf_l,KA±i\imdJl\,
Jo     LV 2<p 1 + sinf/       \ 2 / .

—   h

= - 2f

dt

Ájltf
2<p sm^f) + 1

sin" i dÇ

1 J2¿5 + 1
sin" | i/|,

sin(V2í) + U

where Cv„>0, while (N/2í+l)/(sin(v/2f)+l)>| on the interval 0<|<tt.

It follows that the inequality (2c) is satisfied (since K^.\ and <f>^\),

proving our claim.

Example 2. We claim that any solution of equation y"-\-K(\/K+sin t)y

=0, i^O, where K is a real number, vanishes on every interval of

length 77 on the ray [0, oo). To prove this statement choose ew= 1, and check

the inequality (2c). We comment that the oscillatory behavior of this

equation is well known. (See for example a paper by Elshin [3].) We ob-

serve that in the proof of Theorem 1 we have used the assumption that a

and c (used in the comparison equation (4)) were constant only to facilitate

the derivation of inequality (5). However our arguments may be modified

as follows:

Let t ■ (o(t) = <f>(t) be any function of the class C1^,,, oo), such that

f(i)>0, limi.,00^(/)= + oo.

We represent (<f>')2 in the form (<j>')2(t) = c(t)¡a(t), and repeat the basic

arguments of Theorem 1, as outlined in the proof of Theorem 2.

Theorem 2. If there exists a function <p(t) e C2[t0, f,] such that <f>'(t)>0

for all t e [t0, ti], and sin <£(0,) = sin r/>(02) = O for some du02E [t0, ?,],

02>01^i'o, and such that

(6) {[y(t) - x(t)(<f>')-]sin2(<Ht)) + </>'a'sin <f>(t)cos <f>(t)¡ dt > 0,
J6i

then every solution of (\) will vanish on [0l, 02].
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Proof.    We choose a function

where Kisa positive constant. Clearly a{t) satisfies the differential equation

(8) a' + {<j>"l4>')a = 0,

and choose

(9) c{t) = a(/)(f )*(/),       t0£t< tv

It is easily checked that w(f)=sin(c/>(i)) obeys the differential equation,

(10) {a{t)uj + c{t)u = 0

and that

(10a) «(A) = u{62) = 0,

while the inequality (6) can be rewritten as:

n(*<>-„>)«'+»«>»»•©'dt >0.

Now Leighton's variational theorem can be applied directly, completing

the proof. Some obvious corollaries can be obtained by combining this

result with the Sturm-Piccone comparison theorem. (See for example [2]

for an exposition.)

Example 3. We shall use Theorem 2 to demonstrate that the solutions

of the equation y"+t-xy' + t2r-l+y=0, re(l, oo), r>t>0, will vanish

on every interval of the form: / e [(«7rr)1/r, ((rt+l)w)1"'], f>l. (It is

easy to show that the solutions are oscillatory.)

Proof. We choose <f>{t)=r-1tr. The original equation can be written

in the selfadjoint form {ty')'+t2T+ey=0, so that x{t )=r. y{t)=t2r. Choosing

ei = {mrr)1,r, 02=[{n+l)tTr]1,r, we compute

f2[[rr+£ - í(í2(r"-1))]sin2(f-1ír) + |F-1sin(2r-1F)} dt
Je i

= p + \ i V-1 sin(2r-1F) dt
Je i

= p + \fA sin(2r-1|) d£
Jnxr

/*2^(« + l/2)

— u + ï sin r\ drj = ¡a,
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where p=$l\ {t2r+i—tr) sin2(/-1r) dt>0. Hence every solution of this

equation will vanish on every interval of length T= {{n+ l)Trr)1,r — {ntrr)1/T

for all t> 1, which was to be shown.

2. The equation

(11) {*{t)x')' + y{t)f{x) = 0,       t^tu.

A similar (weaker) result can be obtained more easily for equation (11)

or its special case

(12) (a(r)x')' + y{t)xK = 0,      t^ ,0,

where K is an odd integer, and a{t)^0. (There is no loss of generality in

assuming a(i)>0.) a(?) e C2[t0, ?,), y{t) e C[t0, fx)- Using the result of this

author [4], and putting u{t) = sin cot, o.=tx=mx\w, ß = t2={n+\)trjco

(using symbolism of [4]), we obtain the following:

Corollary. Let G(£) be any function such that G(0)=0, andG(£)>0 if

1^0. Denote dGjd£ by g(£). Let «>0 be a number such that

rt%-=in i di/»

(13) [y(f)G(sin cot) — o>2a(i)cos2 cot] dt > 0
Jt 1117, UJ

for some integer n. Then any solution x{t) of equation (12) will have the

property that \x{t)\<{m¡K)l/K~l for some t e [tx, t2], tx=mr\co, t2=

{n+1)77/(1), where m=max(E(, f¡1 (g2(sin cot)l4G{sin cot)), provided such

maximum exists.

In the more general case of (11), we easily have a similar result. The

inequality (13) with G{t¡) having identical properties on {mr/co, {n+l)tT¡co)

implies that every solution x{t) of (11) will have the property that/'(x(/))<

m {f'{x)—df{x)ldx), on some subinterval of {t1=mr¡(o, t2={n+1)77/01),

where as before m = maxí6[¡i,I,!][g2(sin w/)/4C7(sin cot)], provided m exists.

Example 4.    Consider the equation

{x2y'Y + (x2 4- K (sin x)/x).f5 = 0,       x > -n,    K < 1,

which is equivalent to the Emden-Fowler equation perturbed by the

{K (sin x)lx)y» term.
We claim that all solutions will attain values smaller in absolute value

than .7 on every interval of length equal to 7r2. Choosing G(f)=|2 (777= 1),

(0= 1/tt, we compute according to formula (13)

r(B+1,,r/<u, sin2(ft)i)        J, sin A      2/
r-—- - wit" + K-   cos (coi) dt

Jn*,c 4 \ t   I

f1"-1»1'2 Jtt2  . ,             2  \      K /siruV)\
= t I — sin  t — cos  t I — — I-I dr.

J„„» \4 / 7T2^       7TT       '
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A rough numerical computation shows that for n^l (t^tt2), A^<1, this

integral is positive. Hence df(y)/dy=5yi will attain values smaller than

m=\, or \y(x)\<$'(\¡5)<.l on some subinterval of [mr2, (n+l)ir2], as

required.

Clearly this estimate is valid for the Emden-Fowler equation y"+

(l/x)/ +y*=0, x>n. We remark that a more detailed numerical compu-

tation would result in an improved estimate.
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