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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually

elegant and polished character, for which there is no other outlet.

ON A THEOREM OF RUDIN

DONALD  R.   CHALICE

Abstract. We give short proofs of a theorem of Rudin about

polynomial approximation in R-^n and a corollary of this theorem

which says that any function algebra on [0, 1] generated by one

complex-valued function and n real functions is all continuous

functions. At the same time our proof shows that both results hold

with n replaced by an arbitrary index set A.

Denote the points of R2 x RA by (z, /). C(K) denotes all continuous

functions on K.

Theorem 1. Let K be a compact subset of R2xRA such that Kt=

{z|(z, t) e K} does not separate the plane for any t. Iffe C(K) andft(z) =

f(z, t) is analytic at every interior point of Kt then f can be approximated

uniformly on K by polynomials in z and ta (a e A).

Proof. Let A be the function algebra on K generated by z and the ta.

Let ¡i be an extreme point of ball(/f1). Since the closed support of p is a

set of antisymmetry, p is concentrated on some Kt x {/}. But by Mergelyan's

theorem/can be approximated uniformly there by polynomials in z, and

so is annihilated of p. Thus/e A.

The following corollary is immediate from the above but the direct

proof is very short.

Theorem 2. Let K be a compact subset of the line. Iffe C(K) and

ua (a e A) are real-valued functions in C(K) such that fand the ua separate

the points of K then the function algebra A on K generated by f and the

ua is C(K).

Proof. Again let p be an extreme point of ball(^ -1). Each ua must be

constant on S, the closed support of p. Thus/|S is a homeomorphism of

a compact subset of the line into the plane. It is well known that/(5)
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cannot separate the plane so Mergelyan's theorem shows p—0 and thus

A = C(K).
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