## SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

## ON A THEOREM OF RUDIN

DONALD R. CHALICE

ABSTRACI. We give short proofs of a theorem of Rudin about polynomial approximation in  $R^{2+n}$  and a corollary of this theorem which says that any function algebra on [0,1] generated by one complex-valued function and n real functions is all continuous functions. At the same time our proof shows that both results hold with n replaced by an arbitrary index set  $\Lambda$ .

Denote the points of  $R^2 \times R^{\Lambda}$  by (z, t). C(K) denotes all continuous functions on K.

THEOREM 1. Let K be a compact subset of  $R^2 \times R^{\Lambda}$  such that  $K_t = \{\dot{z} | (z,t) \in K\}$  does not separate the plane for any t. If  $f \in C(K)$  and  $f_t(z) = f(z,t)$  is analytic at every interior point of  $K_t$  then f can be approximated uniformly on K by polynomials in z and  $t_a$   $(a \in \Lambda)$ .

PROOF. Let A be the function algebra on K generated by z and the  $t_a$ . Let  $\mu$  be an extreme point of ball $(A^{\perp})$ . Since the closed support of  $\mu$  is a set of antisymmetry,  $\mu$  is concentrated on some  $K_t \times \{t\}$ . But by Mergelyan's theorem f can be approximated uniformly there by polynomials in z, and so is annihilated of  $\mu$ . Thus  $f \in A$ .

The following corollary is immediate from the above but the direct proof is very short.

THEOREM 2. Let K be a compact subset of the line. If  $f \in C(K)$  and  $u_a$   $(a \in \Lambda)$  are real-valued functions in C(K) such that f and the  $u_a$  separate the points of K then the function algebra A on K generated by f and the  $u_a$  is C(K).

PROOF. Again let  $\mu$  be an extreme point of ball $(A^{\perp})$ . Each  $u_a$  must be constant on S, the closed support of  $\mu$ . Thus f|S is a homeomorphism of a compact subset of the line into the plane. It is well known that f(S)

Received by the editors October 11, 1971.

AMS 1970 subject classifications. Primary 46J10; Secondary 41A10.

cannot separate the plane so Mergelyan's theorem shows  $\mu=0$  and thus A=C(K).

## REFERENCE

1. Walter Rudin, Subalgebras of spaces of continuous functions, Proc. Amer. Math. Soc. 7 (1956), 825-830. MR 18, 587.

DEPARTMENT OF MATHEMATICS, WESTERN WASHINGTON STATE COLLEGE, BELLINGHAM, WASHINGTON 98225