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ON  THE  RANGE   OF   A   COERCIVE  MAXIMAL  MONOTONE
OPERATOR IN A NONREFLEXIVE  BANACH SPACE1

JEAN-PIERRE  GOSSEZ

Abstract. It is shown that the range of a coercive everywhere

defined maximal monotone operator from a (nonreflexive) Banach

space into its dual is dense for the weak* topology but not neces-

sarily for the norm topology.

1. Introduction. Let Ibea real Banach space with dual X*, and let

T;X-*2X be a coercive maximal monotone operator with domain D(T)

and range R(T). One of the basic results of monotone operator theory

asserts that if A'is reflexive, then R(T) is all of X* (cf. [3]). The assumption

of reflexivity is essential for T to be onto. However, without reflexivity,

it is known that in the "selfadjoint" case, i.e. when Fis the subdifferential

of a lower semicontinuous proper convex function, R(T) is dense in X*

for the norm topology of X* (this follows from the Bishop-Phelps theorem

[1]). The question was raised some years ago by F. E. Browder as to

whether or not this density property holds in general.

In §3 we answer this question negatively. We exhibit an everywhere

defined singlevalued demicontinuous monotone operator from I1 to f°

which is coercive but whose range is not dense in /œ for.the norm topology

of/50. On the other hand, we show in §4 that at least when Tis everywhere

defined, a weaker density property holds, namely that R(T) is weak*

dense in X*.

The construction of the above counterexample relies on a close examina-

tion of the monotone extensions of Tto the bidual X**. We remark here

that the strong density property for R(T) can be deduced from a suitable

assumption relative to these monotone extensions (cf. [7] and §2).

Y *
2. Monotone extensions to the bidual. Let T: X—+2 be a monotone

operator, and denote by TX:X**—-<-2'Y   the operator whose graph is given
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by

gr Tx = {(x**, x*) | 3 a net (xt, xf) e gr F with x¿ bounded,

Xj->x** weak** and x*-*-x* in norm}.

(Z is identified with a subspace of A'**, and cl will denote closure for the

norm topology.) Clearly Tx is a monotone extension of F. Under the

assumption that Tx is maximal monotone, we proved in [7] that if T is

coercive, then R(TX)=X*; thus, in particular, cl R(T)=X*.2

It might be thought that Tx is maximal monotone as soon as F is maxi-

mal monotone. Although this is the case when F is a subdifferential

(cf. [9], [7]) or when Fis the monotone operator associated with a saddle-

function (cf. [10], [8]), it is not true in general, as is seen from the following

proposition.

Proposition 1. Let A:X-+X* be a bounded linear antisymmetric

mapping such that (x**, — A*x**) is nonnegative for all x** e X** and

positive for at least one x** eX**. Then —A* is the unique maximal

monotone extension of A to the bidual, and gr Ax^gr( — A*).

Proof. Clearly — A*:X**^-X* is a maximal monotone extension of A.

Consequently gr Ax<^gr( — A*), and since (x**, jc*}=0 for all (x**, x*) e

gr Ax, we obtain gr Ax^gr( — A*). To prove the uniqueness assertion,

take (x**,x*) in the graph of a monotone extension of A. We have

(x**-u, x*-Au)^0 for all it e X, so that (***, x*)^(u, x*) + {x**, Au)

for all ueX, but this implies x*--A*x**.   Q.E.D.

Example. Let A-.l1-»!" be defined by (Ax)(n) = Jf£=xx(m)K(m,n)

for xel1, where K(m,n)=0 if m=n, —1 if n~>m and +1 ifn<m. Then

A satisfies the conditions of Proposition I.

Proof. Denote by ßN the Stone-Cech compactification of A7 and recall

the identifications: /°°^(ßN) and (la)* = ,,e(ßN). Then it is easy to ve rif

that <jt, -A*n) = [fj,(ßN\N)]2 for all p. e Jt(ßN), where p(ßN\N) denotes

the /«-measure of ßN\N.    Q.E.D.

We conclude this section with some remarks concerning the monotone

extensions of a linear operator. Let B:X-*X* be a closed densely defined

linear monotone mapping. Using the bipolar theorem and [7, p. 379],

one obtains

(1) Bx = B*d

where B*:X**-+X* is the dual of B and B*d:X**-*X* the dual of B*.

Thus D(BX)=X** if and only if B is weakly compact, and in this case,

2 The proof is given in [7] under a slightly stronger assumption but it carries over

with little change to the present situation.
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of course, Bx is maximal monotone. Another consequence of (1), by an

argument similar to [2, p. 37], is that if Bx is maximal monotone, then B*

is monotone. It would be of interest to know whether the converse is true.

This is certainly the case when B is bounded and antisymmetric, as we now

briefly indicate: define the linear mapping C:Ar**->-Ar* byCx** = — B*x**

foTX** e D(C)={y**\(y**, -B*y**)^0}; then C is maximal monotone,

and C=BX if and only if B**(D(C))^X*; but B**x** = -B*x** for

x** <eD(C).

3. Strong density property. The extension process considered in the

previous section is crucial for our main result.

Proposition 2. Let A : X-^-X* satisfy the conditions of Proposition 1 and

let J:X-*2X be the duality mapping. Then there exists X>0, arbitrarily

small, such that R(XJ+A) is not dense in X* for the norm topology of X*.

Taking for A the mapping from Z1 to /°° described in §2 and for J the

duality mapping corresponding to a Gâteaux differentiable norm on ll

(such a norm exists, cf. [5]), we obtain a coercive demicontinuous mono-

tone operator whose range is not dense for the norm topology.

Proposition 2 is a direct consequence of the following three lemmas,

where Jt:X-^2x  is defined for e>0 by

(2) Jcx = {x* | (x, x*) ^ | ||x||2 + | UxY - £}

for xe X. (Note that (2) with e=0 is the definition of F)

Lemma 1.    Let T;X^2X  be a monotone operator. Let ¿>0. If

cl R(XJ+ T) = X*,

then R(XJC+T)=X* for all e>0.

X*
Lemma 2. Let T:X—>-2 be a monotone operator, and suppose that

for some e>0, R(XJE+T)=X* for all X>0 sufficiently small. Then

R(TX) = R(S) where S:X**->-2'    is any maximal monotone extension of T.

Lemma 3. Let A:X+X* satisfy the conditions of Proposition 1. Then

—A*:X**—>-X* is a maximal monotone extension of A, and R(AX)^

R(-A*).

Proof of Lemma I. Take e>0 and x* e X*. We have x* e cl R(XJ+ T).

More precisely, using the coercivity of XJ+T, there exists k such that

x* e cl{(XJ+T)x\\\x\\^k}. But from the definition of./,, there exists r¡>0

such that Jx+B^Jtx for all x with ||x||*5/c, where Bn is the ball in X*

with center 0 and radius r¡. Consequently x* e {(XJc+T)x\\\x\\^k}.

Q.E.D.
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Proof of Lemma 2. Let S:X**-^2X* be a maximal monotone exten-

sion of F. Clearly gr F^gr S, so that R(TX)^R(S). Now let x* e R(S).

By assumption, for all 1>0 sufficiently small, there exists xx such that

x*=kyf+zf with y* e Jtxx and z* e Txx. We will prove that xx remains

bounded when AJ.0. It will follow, passing to a subnet if necessary, that

xx^x** weak** and z*-*x* in norm (because Je transforms a bounded

set into a bounded set). This shows (jc**, x*) e gr Tx, thus x* e R(TX).

To prove that xx remains bounded when 2J.0, choose w** with x* e Su**.

By monotonicity {u**—xx, x*~z*)^0, which gives (u**. yx)^.(xx,y*).

Using the definition of Je, this implies \ \u**\2~^\ ¡|xj|2 —e, and the

conclusion follows.   Q.E.D.
Proof of Lemma 3. Part of this lemma is contained in Proposition 1.

It remains to see that R(AX) is different from R(—A*). We will show that

if x** satisfies (x**, -A*x**)>0, then -A*x** i R(AX). Suppose that

-A*x**=Axy** for some y**. Since Ax=A*d (cf. §2),

(x**, -A*x**) = (y**, A*x**) = (y**, -Axy**) = 0,

a contradiction.   Q.E.D.
As a corollary to Lemma 2, remark that if F satisfies the assumption of

Lemma 2 and admits an injective maximal monotone extension to X**,

then Tx is maximal monotone.

4. Weak* density property. Let F: A"->-2'Y be a monotone operator,

and denote by T2:X**->-2x  the operator whose graph is given by

gr F2 = {(x**, x*) | 3 a net (x„ x*) e gr F with x, bounded,

xi -* x** weak**, x* -> x* weak* and

lim sup (x„ x*> ^ (x**, x*)}.

T2 is an extension of F which, in general, is larger than Tx. If Tx is maximal

monotone, then T2 = TX. The definition of F2 is closely related to the

notion of an operator of type (M) with respect to a subspace of its domain

(cf. [4]).

Proposition 3. IfT:X-^-2x is a coercive maximal monotone operator

with D(T) = X, then R(T2)=X*. In particular R(T) is weak* dense in X*.

Proof. The proof is based on arguments which have become standard

in monotone operator theory, and we only sketch it. First note that T

is upper semicontinuous from the norm topology of X to the weak*

topology of X* and that for each x e X, Tx is a nonempty weak* compact

convex subset of X* (cf. [3]). It follows that if F is a finite-dimensional

subspace of Xand iF the injection of F into X, the approximant operator
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ipTiF:F-*2F has the same properties as T. This enables us to solve the

approximant equation, and it is easy to go to the limit using the weak**

compactness of the unit ball of A"** and the definition of T2.   Q.E.D.

Proposition 3 can be applied to the study of variational boundary

value problems for quasilinear elliptic systems in divergence form with

rapidly increasing coefficients. The existence results obtained in this way

involve a monotonicity assumption with respect to all the derivatives of

the unknown functions and are similar to those of [6]. More general

existence results which only require a monotonicity assumption with

respect to the top order derivatives of the unknown functions are given

in the author's paper Boundary value problems for quasilinear elliptic

equations with rapidly increasing coefficients, Bull. Amer. Math. Soc.

(to appear).
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