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A COUNTEREXAMPLE TO AN ANALOGUE
OF ARTIN’S CONJECTURE

P. J. WEINBERGER

ABSTRACT. I construct a counterexample to a conjecture of
Larry Goldstein on the density of primes which split completely in
none of a set of algebraic number fields. The fields used are all
Abelian over the rationals.

1. Introduction. Let S be a set of rational primes, and for each pe §
let L, be a finite dimensional normal extension of the field of rational
numbers Q. Let T be the set of those natural numbers divisible only by
primes of S, together with one. For each k € T let L, be the compositum of
those L, with p|k, p € S. Take L,=0. Let n(k) be the degree of L, over Q.
Let A be the natural density of those rational primes which split completely
(into distinct factors) in none of the fields L,, for all p € S. In ([1], [2]) it
is conjectured that if
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This conjecture is known to be true in the cases of finite S, and in the
case when L,> Q({,.) for every prime p, where {; denotes a primitive
jth root of one. However, the example constructed below shows that the
conjecture is false. This counterexample has S as the set of all primes, and
also satisfies
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the condition of the Brauer-Siegel theorem.

2. In this section consider a fixed odd prime p. Let n>1 be an integer
and let m=p2"— 1. Then deg(Q({,,))=¢(m) and by a well-known result on
cyclotomic fields, p is unramified in Q({,,). Since Q({,,) is Abelian we may
unambiguously speak of the decomposition field, k,, of p in Q({,). The
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above remarks establish the following:

k, is Abelian, in particular, k,, is normal;
©) p splits completely in k,,;
deg(k,) = $(m)/2".

Further, we have

w . m(m) m i
deg(k,) = ¢(m)[2 s
cgkn) = $m)[2"> 2" > 2"logm "~ 2*"logp

SO
(5) lim deg(k,) = oo.
The proof of the following lemma occupies the rest of this section.
LEMMA.
deg(k,
© im )
n-o log(disc(k,))

Proor. The proof requires some standard notions from class field
,theory for absolutely Abelian fields. A concise summary may be found in
3, pp- 4-6].

For any positive integer j let c(j) denote the multiplicative group of
reduced residue classes modulo j. Then Q({,,) is the class field for the group
of characters c(m)* on c¢(m), while k,, is the class field for the group X of
those characters on c(m) for which y(p)=1; X={y € c(m)*|x(p)= 1}.

Note that X is isomorphic with (c(m)/{p))*, where (p) is the subgroup of
c(m) generated by p. The discriminant-conductor formula says that

dise(k,) = [ 1, = [+
reX flm
where a(f) is the number of elements of X with conductor f.

If (j, p)=1, let e(j) denote the exponent of p modulo j. Then if j|m, the
number of elements of ¢(j)* which are one at p is ¢(j)/e( ) since the order
of ¢(j) is ¢(j) and the order of (p) in c(j) is e(j). Hence

#(f) .
b(f) = - = ,
2 e(f) uzf “

since every element of X which is defined modulo f has conductor which
divides f. The Mabius inversion formula gives

LN < Ul
7) (f) = bl=) = —_—
5 af) %mn&) %M”Mm

The lemma will be proved by showing that a(m) is sufficiently large.
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Write

2"-1

) m = my(p + 1) = m2m,,

let 2°| |m; that is, 2°|m and 2**! does not divide m. It is easy to see that
(m,, my)=1.

To use (7) to calculate a(m) it is necessary to evaluate e(m/d) for d|m
and d square free. An easy induction shows that 2*-"~!||(p—1), so
e(2*°)=2"" when =0 or 1. If ¢*|m, then e(g®)<2" since p*""
=1 (mod m,), while if ¢°| |m,, then (8) shows that e(g®)=2". Hence, if
d=dd, with d, odd, d,|m,, duf2m,,

e(mld) =2 if dy <2m,,
=21 if d,=2m,

It is convenient to introduce the multiplicative function F(y)=
2ay M(d)d(y[d), so F(g)=g—2, F(g’)=g"~*(g—1)* where g is prime and
j>1. F(y) is the number of characters of conductor y, although this ob-
servation is not needed in the proof. From (7) it follows that

a(m) = 7 %u(dO[ > udad(Z2) (%)
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Now if y is odd,
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$0, since m,[2* is odd,
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Hence
deg(k,) b(m) n? 1 nt

log(disc(k,)) 2" 2"mlogm 2" Q.E.D.
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3. Denote the primes by 2=p;, p,, - - - . Let L,=0(/7). If p=p,,, let
L,=k,, where k., is one of the fields constructed above, such that deg(L,) >
9™ and deg(L,)/log(disc(L,)) <1/m. These choices are possible by (5) and
(6). Now A=0, since each p splits in L, by (4). Further, n(k)=deg(L,)>
9™ where p=p,, is the largest prime factor of k. Then since there are 2™-!
square free integers whose ]argest prime factor is p,,,

©(h) %(h) <1 2m-1 11
+ + =14,
Z n(h) — ,,,Z_z 9™ 14
so (1) is satisfied. But (2) is not satisfied, since
ph) 2m!
—T =2 T == # 0=A.
Z ”(h) mz—:z
BIBLIOGRAPHY

1. Larry Joel Goldstein, Analogues of Artin’s conjecture, Bull. Amer. Math. Soc. 74
(1968), 517-519. MR 36 #6376.

2. ———, Analogues of Artin’s conjecture, Trans. Amer. Math. Soc. 149 (1970), 431-
442,

3. Helmut Hasse, Uber die Klassenzahl Abelscher Zahlkirper, Akademie-Verlag,
Berlin, 1952. MR 14, 141.

4. Karl Prachar, Primzahlverteilung, Springer-Verlag, Berlin and New York, 1952.
MR 19, 393.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN
48104



