A COUNTEREXAMPLE TO AN ANALOGUE OF ARTIN'S CONJECTURE

P. J. WEINBERGER

ABSTRACT. I construct a counterexample to a conjecture of Larry Goldstein on the density of primes which split completely in none of a set of algebraic number fields. The fields used are all Abelian over the rationals.

1. **Introduction.** Let S be a set of rational primes, and for each $p \in S$ let L_p be a finite dimensional normal extension of the field of rational numbers Q. Let T be the set of those natural numbers divisible only by primes of S, together with one. For each $k \in T$ let L_k be the compositum of those L_p with p|k, $p \in S$. Take $L_1 = Q$. Let n(k) be the degree of L_k over Q. Let Δ be the natural density of those rational primes which split completely (into distinct factors) in none of the fields L_p , for all $p \in S$. In ([1], [2]) it is conjectured that if

$$\sum_{k\in T}\frac{\mu^2(k)}{n(k)}<\infty,$$

then

(2)
$$\Delta = \sum_{k \in T} \frac{\mu(k)}{n(k)}.$$

This conjecture is known to be true in the cases of finite S, and in the case when $L_p \supset Q(\zeta_{p^2})$ for every prime p, where ζ_j denotes a primitive jth root of one. However, the example constructed below shows that the conjecture is false. This counterexample has S as the set of all primes, and also satisfies

(3)
$$\lim_{p \to \infty} \frac{n(p)}{\log(\operatorname{disc}(L_p))} = 0,$$

the condition of the Brauer-Siegel theorem.

2. In this section consider a fixed odd prime p. Let n>1 be an integer and let $m=p^{2^n}-1$. Then $\deg(Q(\zeta_m))=\phi(m)$ and by a well-known result on cyclotomic fields, p is unramified in $Q(\zeta_m)$. Since $Q(\zeta_m)$ is Abelian we may unambiguously speak of the decomposition field, k_n , of p in $Q(\zeta_m)$. The

Received by the editors November 23, 1971.

AMS 1970 subject classifications. Primary 12A35, 12A75; Secondary 12A65.

above remarks establish the following:

(4)
$$k_n$$
 is Abelian, in particular, k_n is normal;
 p splits completely in k_n ;
 $\deg(k_n) = \phi(m)/2^n$.

Further, we have

$$\deg(k_n) = \phi(m)/2^n \gg \frac{\pi(m)}{2^n} \gg \frac{m}{2^n \log m} \gg \frac{p^{2^n}}{2^{2n} \log p},$$

so

(5)
$$\lim_{n\to\infty} \deg(k_n) = \infty.$$

The proof of the following lemma occupies the rest of this section.

LEMMA.

(6)
$$\lim_{n \to \infty} \frac{\deg(k_n)}{\log(\operatorname{disc}(k_n))} = 0.$$

PROOF. The proof requires some standard notions from class field, theory for absolutely Abelian fields. A concise summary may be found in [3, pp. 4-6].

For any positive integer j let c(j) denote the multiplicative group of reduced residue classes modulo j. Then $Q(\zeta_m)$ is the class field for the group of characters $c(m)^*$ on c(m), while k_m is the class field for the group X of those characters on c(m) for which $\chi(p)=1$; $X=\{\chi\in c(m)^*|\chi(p)=1\}$.

Note that X is isomorphic with $(c(m)/\langle p \rangle)^*$, where $\langle p \rangle$ is the subgroup of c(m) generated by p. The discriminant-conductor formula says that

$$\operatorname{disc}(k_n) = \prod_{\chi \in X} f_{\chi} = \prod_{f \mid m} f^{a(f)}$$

where a(f) is the number of elements of X with conductor f.

If (j, p)=1, let e(j) denote the exponent of p modulo j. Then if j|m, the number of elements of $c(j)^*$ which are one at p is $\phi(j)/e(j)$ since the order of c(j) is $\phi(j)$ and the order of $\langle p \rangle$ in c(j) is e(j). Hence

$$b(f) = \frac{\phi(f)}{e(f)} = \sum_{j|f} a(j),$$

since every element of X which is defined modulo f has conductor which divides f. The Möbius inversion formula gives

(7)
$$a(f) = \sum_{j|f} \mu(j)b\left(\frac{f}{j}\right) = \sum_{j|f} \mu(j)\frac{\phi(f|j)}{e(f|j)}.$$

The lemma will be proved by showing that a(m) is sufficiently large.

Write

(8)
$$m = m_1(p^{2^{n-1}} + 1) = m_1 2m_2,$$

let $2^{\alpha} | |m|$; that is, $2^{\alpha} | m$ and $2^{\alpha+1}$ does not divide m. It is easy to see that $(m_1, m_2) = 1$.

To use (7) to calculate a(m) it is necessary to evaluate e(m/d) for d|m and d square free. An easy induction shows that $2^{\alpha-n-1}||(p-1)$, so $e(2^{\alpha-\sigma})=2^{n-\sigma}$ when $\sigma=0$ or 1. If $q^{\beta}|m_1$ then $e(q^{\beta})<2^n$ since $p^{2^{n-1}}\equiv 1\pmod{m_1}$, while if $q^{\beta}|m_2$, then (8) shows that $e(q^{\beta})=2^n$. Hence, if $d=d_1d_2$ with d_1 odd, $d_1|m_1$, $d_2|2m_2$,

$$e(m/d) = 2^n$$
 if $d_2 < 2m_2$,
= 2^{n-1} if $d_2 = 2m_2$.

It is convenient to introduce the multiplicative function $F(\gamma) = \sum_{d|\gamma} \mu(d)\phi(\gamma/d)$, so F(g)=g-2, $F(g^j)=g^{j-2}(g-1)^2$ where g is prime and j>1. $F(\gamma)$ is the number of characters of conductor γ , although this observation is not needed in the proof. From (7) it follows that

$$a(m) = 2^{-n} \sum_{d_1} \mu(d_1) \left[\sum_{\text{odd } d_2} \mu(d_2) \phi\left(\frac{2m_1}{d_1}\right) \phi\left(\frac{m_2}{d_2}\right) + \sum_{\text{even } d_2 < 2m_2} \mu(d_2) \phi\left(\frac{m_1}{d_1}\right) \phi\left(\frac{2m_2}{d_2}\right) + \mu(2m_2) 2\phi\left(\frac{m_1}{d_1}\right) \right]$$

$$= \sum_{d_1} \mu(d_1) \phi\left(\frac{m_1}{d_1}\right) \left(\sum_{\text{odd } d_2} \mu(d_2) \phi\left(\frac{m_2}{d_2}\right) - 3\mu(m_2) \right) 2^{-n}$$

$$= 2^{\alpha - 2 - n} F\left(\frac{m_1}{2^{\alpha - 1}}\right) (F(m_2) - 3\mu(m_2)).$$

Now if γ is odd,

$$\frac{F(\gamma)}{\gamma} \gg \prod_{g|\gamma} \frac{g-2}{g} \gg \prod_{g|\gamma} \left(1 - \frac{1}{g}\right)^2 \gg (\log\log\gamma)^{-2},$$

so, since $m_1/2^{\alpha-1}$ is odd,

$$a(m) \gg 2^{\alpha-2-n} \frac{m_1}{2^{\alpha-1}(\log\log m_2)^2} \left(\frac{m_2}{(\log\log m_2)^2} - 3\right) \gg \frac{2^{-n}m}{n^4}.$$

Hence

$$\frac{\deg(k_n)}{\log(\operatorname{disc}(k_n))} \ll \frac{\phi(m)}{2^n} \frac{n^4}{2^{-n}m} \frac{1}{\log m} \ll \frac{n^4}{2^n}.$$
 Q.E.D.

3. Denote the primes by $2=p_1, p_2, \cdots$. Let $L_2=Q(\sqrt{7})$. If $p=p_m$, let $L_p=k_n$, where k_n is one of the fields constructed above, such that $\deg(L_p)>9^m$ and $\deg(L_p)/\log(\operatorname{disc}(L_p))<1/m$. These choices are possible by (5) and (6). Now $\Delta=0$, since each p splits in L_p by (4). Further, $n(k) \ge \deg(L_p)>9^m$ where $p=p_m$ is the largest prime factor of k. Then since there are 2^{m-1} square free integers whose largest prime factor is p_m ,

$$\sum \frac{\mu^2(h)}{n(h)} \le 1 + \frac{1}{2} + \sum_{m=2}^{\infty} \frac{2^{m-1}}{9^m} = 1 + \frac{11}{14},$$

so (1) is satisfied. But (2) is not satisfied, since

$$\sum_{n(h)} \frac{\mu(h)}{n(h)} \ge 1 - \frac{1}{2} - \sum_{m=2}^{\infty} \frac{2^{m-1}}{9^m} = \frac{3}{14} \ne 0 = \Delta.$$

BIBLIOGRAPHY

- 1. Larry Joel Goldstein, Analogues of Artin's conjecture, Bull. Amer. Math. Soc. 74 (1968), 517-519. MR 36 #6376.
- 2. ——, Analogues of Artin's conjecture, Trans. Amer. Math. Soc. 149 (1970), 431–442.
- 3. Helmut Hasse, Über die Klassenzahl Abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952. MR 14, 141.
- 4. Karl Prachar, *Primzahlverteilung*, Springer-Verlag, Berlin and New York, 1952. MR 19, 393.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104