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TOTAL  STABILITY IN  NONDIFFERENTIABLE  SYSTEMS

ROGER  C.   McCANN

Abstract. A definition of total stability in nondiflferentiable

dynamical systems is given. A prolongation is defined which

characterizes the total stability of compact sets. A compact set

which is the intersection of compact asymptotically stable sets is

shown to be totally stable.

Let M be a compact invariant (with respect to a dynamical system 7r)

subset of a locally compact metric space X. Stability properties of M may

be described in terms of a fundamental system of neighborhoods of M,

e.g. M is stable if and only if M possesses a fundamental system of posi-

tively invariant neighborhoods; M is absolutely stable if and only if M

possesses a fundamental system of absolutely stable neighborhoods [1].

In [4] it is proved that M is absolutely stable if and only if M possesses

a fundamental system 3F of neighborhoods such that

(i) If U e &, then U is open and positively invariant,

(ii) if U, Ve ¿F are such that £?<= V, then there is a We¿F such that
¿7 c we Wc V.

A similar theorem can be proved where J2" consists of stable neighbor-

hoods of M. Thus the absolute stability of M can be described in terms of

fundamental systems of neighborhoods which consist of positively in-

variant, stable, or absolutely stable neighborhoods of M. Since four of the

basic concepts of dynamical system theory are invariance, stability,

absolute stability, and asymptotic stability, a natural question which

arises is: "What type of stability does M have if it possess a fundamental

system of asymptotically stable neighborhoods?" Obviously M will be

absolutely stable, but are there any other stability characteristics which are

not typical of a compact absolutely stable set? It is the purpose of this

paper to identify this type of stability, which we will call total stability.

In [5] and [6] Seibert defines a type of stability ("rough" stability or P*

stability) which requires that the set under consideration possess a funda-

mental system of asymptotically stable neighborhoods. We do not use

this definition, but do show that a compact set which is P* stable is also

totally stable.
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The idea of "total stability", "stability under persistent perturbations"

or "strict stability" has been studied by many authors. (For a bibliography

see [1], [5], [6].) The basic concept may be summarized as follows: A

class of dynamical systems is given, one of which, 7r0, is considered as

being "unperturbed" while the others are considered perturbed relative to

770. A set M is called "totally stable" if all trajectories of dynamical sys-

tems sufficiently close to 770, with initial points sufficiently near M, remain

within a given neighborhood of M.

In what follows R and R+ will denote the reals and nonnegative reals

respectively.

A dynamical system on a topological space A' is a mapping 77 of XxR

into X such that (where xnt=n(x, t) for (x, t) e XxR)

(i) xttO=x for every xeX,

(ii) (xtTt)tTS=xtr(t+s) for every x e X and s, t e R,

(iii) 77 is continuous in the product topology.

Let AcX and £<= R. Then A-nB will denote the set {jct7/:x e A,t e B}.

A subset A of A' is called positively invariant if and only if AtrR+=A.

A subset A of X is called stable if for any neighborhood U of A there

is a neighborhood V of A such that VnR+<=- U. The set A is called asymp-

totically stable if it is stable and there is a neighborhood W of A such that

for every xeW, the positive limit set of x is a subset of A, i.e.

fl {cl(x77[f, +<x,)):t^0}<=A for every xe W.

Let M be a compact subset of X. A Liapunov function/for M is a con-

tinuous mapping of a neighborhood W of M into R+ such that

(i) /(x)=0 if and only if x e M,

(ii) f(xirt)<f(x) for x$M, />0, and xir[Q, r]c W.

A compact set M is asymptotically stable if and only if there exists a

Liapunov function /for M such that f {xtrt) <f (x) wherever x^M and

i>0 [1].
A subset S of X is called a section with respect to 77 if (Strt) r\S= 0 for

all /5¿0.

In this paper we will be concerned with a dynamical system 77 and net

77, of dynamical systems on X such that Tr¡-*Tr in the sense that if x¡-*x

and f,->f, then xiir{ti-+xnt. If rrt—*-tr, we say that 77, converges to 77. If X

is locally compact, then the convergence of 77, to 77 as defined above is

equivalent to the convergence of 77, to 77 in the compact open topology

[2, VI, 3.3].
Definition 1. A subset M of X is totally stable (with respect to 77)

if and only if given any neighborhood U of M there is another neighbor-

hood V of M such that, for any net n¡ of dynamical systems on X which

converges to 77, Vtt¡R+ is eventually a subset of U.

It should be noted that total stability and absolute stability are distinct
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concepts. Let 7re, e>0, be the planar dynamical system given by x=

[_E! J]x. For e=0, the origin is a center and, hence, absolutely stable.

For £>0, the origin is globally negatively asymptotically stable. Clearly

7T£->-7r0 as £->-0. The origin is absolutely stable, but not totally stable.

Let n denote the set of all dynamical systems on X and 7r e II. 7r is the

dynamical system which will be considered as unperturbed throughout

this paper.

Definition 2. A prolongation [1] with respect to 7r e II is a mapping

Q of x into 2X satisfying

(a) if x e X, then xttR+c Q(x),

(b) g(x)=H {cl(ß( W)):Wa neighborhood of x},

(c) if A is a compact set and xeA, then Q(x)^A or Q(x)ndA^0.

If, in addition, Q2 = Q, then Q is called a transitive prolongation.

Evidently (b) is equivalent to

(b)' Q(x)={y:there are nets x^x, y¡->y, with yt e Q(xt)}.

Define P:X-+2X as follows

P(x) = {y: there exist nets x¿ in X, 7r, in II, and t, in R+

such that x{ -*■ x, irt-*-TT, and X{tt^x ->y}.

Evidently P satisfies (a).

Lemma 3.    P satisfies (b).

Proof. Obviously, P(x)cz f) {d(P(W)) : W a neighborhood of x}. We

will prove the opposite inclusion. Let y e H {cl(P(W))\ W a neighborhood

of x). Then there are nets x, and yf in X such that xt-*x, yr+y, and yt e

P(xt). Thus there are nets x--*-3x,, its-+it, and f5' such that x^V—<->_>>,■. Then

[3, p. 69], there are nets xk-+x, trk~^-rr, and tk such that xknktk-^-y. Thus

j eP(x), which implies the desired result.

Lemma 4.    P satisfies (c).

Proof. Let A be compact and x e /L If x e dA, then x e X7ri?+c.P(.x:),

so that P(x)C\dA9i0 ■ Now suppose that x e int ^ and that P{x)<£A.

Then there is a j> £ P(x) —/< and nets x,-, ni and í¡ such that x¿—>-x, ■¡ri—^ir,

and x¿7r¿/¿—►/. Eventually x¡ e int A and x^-f,- e X— A. Since «■, is con-

tinuous there is a rt, 0<t¿</¿, such that eventually x^n^^edA. The

compactness of 9/4 implies that a subnet of xíwiti converges to a. z e dA.

Then z eP(x)C\dA. This completes the proof.

Combining the previous lemmas we have

Theorem 5.   P is a prolongation.

Theorem 6. A compact set M in a locally compact space is totally stable

ifandonlyifP(M)=M.
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Proof. Suppose that P(M)-= M and that M is not totally stable. Then

there is a compact neighborhood U of M such that for each neighborhood

F of M, there is a net ít^-*w such that Vtt1vR+ is not eventually a subset of

U. Hence there are nets X(-*-x e M, ttí-*tt, and r, such that x&rttt e X— U.

Then there is a net t4 such that x^r, e dU. The compactness of dU implies

P(x)r\dU^0. This contradiction implies that if P(M)-M, then M is

totally stable.

Now suppose that M is totally stable and let U be any neighborhood of

M. Then there exists a neighborhood Va {j of M such that for any net 77,

in II, with 77^77, eventually Ftt^+c tj. It follows that P(M)c [/, which

implies P{M)=M since 1/ was an arbitrary neighborhood of M. This

completes the proof.

Corollary 7. Let Mi be a family of compact totally stable sets in a

locally compact space. Then M=P\ Mt is totally stable.

Proof.   M^P(M)=P(r\ M^Ç] P(Mi)=f] Mt = M.

Theorem 8. In a locally compact space a compact set M is totally stable

if and only if for every neighborhood U of M, there is another neighborhood

Vof M suchthat P(V)cU.

Proof. Suppose M is totally stable, i.e. P(M)=M, and that there is a

neighborhood U of M such that for every neighborhood V of M, P( V)<£ U.

Without loss of generality we may assume that U is compact. Then there

are nets xt-+x e M and y¡ such that y¿ e P{xz) and y¿ $ U. By property (c)

(Definition 2) there exist z, £ dUC\P(xt). Since dU is compact, a subnet of

z¿ converges to a point zedU. Then z eP(x)C\dU. This contradiction

implies that there is a neighborhood V oí M such that P(V)<=U.

To prove the converse let U and V be neighborhoods of M such that

P(F)c rj. Then Mc?(M)c?(F)c U. Since U was an arbitrary neighbor-

hood of M we have P(M) = M. This completes the proof.

Theorem 9. In a locally compact space a compact asymptotically set M

is totally stable.

Proof. Let/be a Liapunov function for M. Then {/"_1([0, r]):r £ R+}

is a fundamental system of neighborhoods of M. Moreover, since

d(/-1([0, r}))=f~l(r) and / is strictly decreasing along trajectories, we

have that 3(/_1([0, r])) is a section. Now let U be any compact neighbor-

hood and Kbe any member of the above fundamental system of neighbor-

hoods of M such that K^int U. Let e>0. By the construction of V, we

have dK77£c:int V and F77[0, 2e]<= Kcjnt U. Let 77, be any net in iT such

that 77j-*77. We will first show that eventually 9K77,£cint V. Assume not.

Then there is a subnet 773 of 77, anda net x¡ in d V such that.v^e e X— int V.
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Since d V is compact we may assume that the nets were chosen so that

x,-»-x edV. Then we have x,7r,,£->X7r£ e A'—int V since A'—int Vis closed.

This is impossible because X7r£ e dVtre^ int V. Hence, eventually dVtrte^-

int V. In a similar manner we can show that eventually FttJO, 2e]<=int U.

Hence, eventually, say for />/0, dF^ecint Fand p7r,[0, 2e]c:int U. We

now show that Fn-^+c jj for i>i0. Assume not. Then there is an x e dV

and a r>0 such that X7r¿< e dU. Set í=sup{t:x7t¿t g dV, 0^t<í}. Since

dV'\% compact, xir¡s g dV. Moreover, (x7rt(5, t))C\ V= 0. Since xtt(s e dV,

(x7Tis)iri(t—s)=XTrt g dU, and Í-VJO, 2e]cint U, we must have t—s>2e.

But dV-n-fS^int U. This contradicts

0 = (x7Tf(s, t)) n V = ((x7r¿í)7r¿(0, t - s)) n F.

This contradiction implies Vtt^+^U for />/'„. It easily follows that

P(F)c 0= U. The desired result now follows from Theorem 8.

Corollary 10. Let M be a compact set which possesses a fundamental

system of asymptotically stable neighborhoods. Then M is totally stable.

Proof. The proof is an immediate consequence of Corollary 7 and

Theorem 9.

Many questions arise which are, as of now, unanswered:

(1) IsP transitive?

(2) If M is totally stable, is M absolutely stable?

(3) Is there a characterization of total stability similar to the character-

ization of stability under persistent perturbations in [5] and [6], e.g. does

M have a fundamental system of asymptotically stable neighborhoods?

Remark. Instead of considering all nets in II which converge to 7r, we

could have proven the same results with respect to a specific net nt. This

would yield a concept of "total stability with respect to 7r¿".
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