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TOTAL STABILITY IN NONDIFFERENTIABLE SYSTEMS
ROGER C. McCANN

ABSTRACT. A definition of total stability in nondifferentiable
dynamical systems is given. A prolongation is defined which
characterizes the total stability of compact sets. A compact set
which is the intersection of compact asymptotically stable sets is
shown to be totally stable.

Let M be a compact invariant (with respect to a dynamical system )
subset of a locally compact metric space X. Stability properties of M may
be described in terms of a fundamental system of neighborhoods of M,
e.g. M is stable if and only if M possesses a fundamental system of posi-
tively invariant neighborhoods; M is absolutely stable if and only if M
possesses a fundamental system of absolutely stable neighborhoods [1].
In [4] it is proved that M is absolutely stable if and only if M possesses
a fundamental system # of neighborhoods such that

(i) If U e #, then U is open and positively invariant,

@) if U, V € .# are such that Uc V, then there is a W € % such that
UcwWeWev.

A similar theorem can be proved where # consists of stable neighbor-
hoods of M. Thus the absolute stability of M can be described in terms of
fundamental systems of neighborhoods which consist of positively in-
variant, stable, or absolutely stable neighborhoods of M. Since four of the
basic concepts of dynamical system theory are invariance, stability,
absolute stability, and asymptotic stability, a natural question which
arises is: “What type of stability does M have if it possess a fundamental
system of asymptotically stable neighborhoods?” Obviously M will be
absolutely stable, but are there any other stability characteristics which are
not typical of a compact absolutely stable set? It is the purpose of this
paper to identify this type of stability, which we will call total stability.

In [5] and [6] Seibert defines a type of stability (“rough” stability or P*
stability) which requires that the set under consideration possess a funda-
mental system of asymptotically stable neighborhoods. We do not use
this definition, but do show that a compact set which is P* stable is also
totally stable.
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The idea of “‘total stability”, “stability under persistent perturbations”
or “strict stability” has been studied by many authors. (For a bibliography
see [1], [5], [6].) The basic concept may be summarized as follows: A
class of dynamical systems is given, one of which, m,, is considered as
being “unperturbed” while the others are considered perturbed relative to
m,. A set M is called ‘“‘totally stable™ if all trajectories of dynamical sys-
tems sufficiently close to m,, with initial points sufficiently near M, remain
within a given neighborhood of M.

In what follows R and R* will denote the reals and nonnegative reals
respectively.

A dynamical system on a topological space X is a mapping 7 of XX R
into X such that (where xmt=m(x, t) for (x, t) € XX R)

(i) xm0=ux for every x € X,
(il) (xmt)yms=xm(t+s) for every x € X and s, € R,

(iii) = is continuous in the product topology.

Let A< X and B< R. Then A= B will denote the set {xmt:x € A, t € B}.
A subset 4 of X is called positively invariant if and only if AwRt=A.

A subset 4 of X is called stable if for any neighborhood U of A4 there
is a neighborhood V of A such that VmrR*< U. The set 4 is called asymp-
totically stable if it is stable and there is a neighborhood W of 4 such that
for every x € W, the positive limit set of x is a subset of A, i.e.
N {cl(xm[t, + 00)):t=0}< A4 for every x € W.

Let M be a compact subset of X. A Liapunov function f for M is a con-
tinuous mapping of a neighborhood W of M into R* such that

(i) f(x)=0if and only if xe M,

(il) fxmt)= f(x) for x ¢ M, t>0, and x7[0, t]< W.

A compact set M is asymptotically stable if and only if there exists a
Liapunov function f for M such that f(xmt) <f(x) wherever x ¢ M and
>0 [1].

A subset S of X is called a section with respect to = if (Smt)NS=& for
all 150.

In this paper we will be concerned with a dynamical system 7 and net
; of dynamical systems on X such that 7,—m in the sense that if x,—x
and t,—t, then x;7t,—xmt. If m-—m, we say that 7, converges to 7. If X
is locally compact, then the convergence of 7, to 7 as defined above is
equivalent to the convergence of 7, to 7 in the compact open topology
[2, VI, 3.3].

DerINITION 1. A subset M of X is totally stable (with respect to )
if and only if given any neighborhood U of M there is another neighbor-
hood V of M such that, for any net =, of dynamical systems on X which
converges to 7, Vm;R* is eventually a subset of U.

It should be noted that total stability and absolute stability are distinct
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concepts. Let 7,, ¢>0, be the planar dynamical system given by x=
[5 olx. For e=0, the origin is a center and, hence, absolutely stable.
For ¢>0, the origin is globally negatively asymptotically stable. Clearly
m,—m, as ¢—~0. The origin is absolutely stable, but not totally stable.

Let I denote the set of all dynamical systems on X and = € II.  is the
dynamical system which will be considered as unperturbed throughout
this paper.

DEFINITION 2. A prolongation [1] with respect to = € II is a mapping
Q of x into 2* satisfying

(a) if x € X, then x7R* < Q(x),

(b) Q(x)= {cl(Q(W)): W a neighborhood of x},

(c) if A is a compact set and x € A, then Q(x)< A4 or Q(x)NOA# .

If, in addition, Q*=Q, then Q is called a transitive prolongation.

Evidently (b) is equivalent to

(b)" Q(x)={y:there are nets x,—x, y,—y, with y, € Q(x,)}.

Define P: X—2* as follows

P(x) = {y:there exist nets x, in X, 7, in [I, and ¢, in R*
such that x; - x, =, - =, and x;m.t; — y}.

Evidently P satisfies (a).
LemMaA 3. P satisfies (b).

ProoF. Obviously, P(x)c=N {cl(P(W)): W a neighborhood of x}. We
will prove the opposite inclusion. Let y € () {cl(P(W)): W a neighborhood
of x}. Then there are nets x, and y, in X such that x,—x, y,—y, and y, €
P(x,). Thus there are nets x]—x,, 7/—, and ¢’ such that x}=it’—y, Then
[3, p. 69], there are nets x,—x, m—, and t, such that xmt,—y. Thus
y € P(x), which implies the desired result.

LemMA 4. P satisfies (c).

PrROOF. Let A be compact and x € 4. If x € 94, then x € xmRt< P(x),
so that P(x)N0dA# . Now suppose that x eint A and that P(x)¢ A4.
Then there is a y € P(x)— A4 and nets x;, m; and ¢, such that x,—»x, 7,—m,
and xr;t,—y. Eventually x; eint 4 and x;m,;t, € X—A. Since =, is con-
tinuous there is a 7,, 0<r;<t;, such that eventually x,7; € 04. The
compactness of 04 implies that a subnet of x,m;t; converges to a z € 04.
Then z € P(x) N0A. This completes the proof.

Combining the previous lemmas we have

THEOREM 5. P is a prolongation.

THEOREM 6. A compact set M in a locally compact space is totally stable
if and only if P(M)=M.
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PROOF. Suppose that P(M)=M and that M is not totally stable. Then
there is a compact neighborhood U of M such that for each neighborhood
V of M, there is a net m,—m such that ¥z’ R+ is not eventually a subset of
U. Hence there are nets x,—~x € M, m,—m, and ¢, such that x,7;t; € X—U.
Then there is a net 7; such that x,,7, € 9U. The compactness of dU implies
P(x)NoU## @ . This contradiction implies that if P(M)=M, then M is
totally stable.

Now suppose that M is totally stable and let U be any neighborhood of
M. Then there exists a neighborhood V< U of M such that for any net ;
in I1, with 7,7, eventually Vm,R*< U. It follows that P(M)< U, which
implies P(M)=M since U was an arbitrary neighborhood of M. This
completes the proof.

COROLLARY 7. Let M; be a family of compact totally stable sets in a
locally compact space. Then M=\ M, is totally stable.

PrROOF. McP(M)=P(N M= P(M)=() M,=M.

THEOREM 8. In a locally compact space a compact set M is totally stable
if and only if for every neighborhood U of M, there is another neighborhood
V of M such that P(V)<U.

PROOF. Suppose M is totally stable, i.e. P(M)=M, and that there is a
neighborhood U of M such that for every neighborhood V of M, P(V)¢ U.
Without loss of generality we may assume that U is compact. Then there
are nets x,—x € M and y, such that y, € P(x,) and y, ¢ U. By property (c)
(Definition 2) there exist z; € 0UNP(x,). Since dU is compact, a subnet of
z; converges to a point z € dU. Then z € P(x)NdU. This contradiction
implies that there is a neighborhood V of M such that P(V)<=U.

To prove the converse let U and ¥ be neighborhoods of M such that
P(V)< U.Then Mc P(M)<P(V)< U. Since U was an arbitrary neighbor-
hood of M we have P(M)=M. This completes the proof.

THEOREM 9. In a locally compact space a compact asymptotically set M
is totally stable.

PrOOF. Let fbe a Liapunov function for M. Then {f~*([0, r]):r € R*}
is a fundamental system of neighborhoods of M. Moreover, since
a(f~X([0, r1))=f"*(r) and f is strictly decreasing along trajectories, we
have that 9(/ ([0, r])) is a section. Now let U be any compact neighbor-
hood and ¥ be any member of the above fundamental system of neighbor-
hoods of M such that P<int U. Let ¢>0. By the construction of V, we
have dVme<int ¥ and Vr[0, 2¢]< P<int U. Let m; be any net in IT such
that =,—m. We will first show that eventually dVr,e<int V. Assume not.
Then there is a subnet 7; of m, and a net x; in 0V such that x;me € X—int V.



116 R. C. McCANN

Since 0¥ is compact we may assume that the nets were chosen so that
x;—x € dV. Then we have x,m,e—xme € X—int V since X—int V is closed.
This is impossible because xme € dVmre<int V. Hence, eventually dVrm,e<
int V. In a similar manner we can show that eventually F'm,[0, 2¢]<int U.
Hence, eventually, say for i>i,, 0Vme<int V and V[0, 2¢]<int U. We
now show that ¥, Rt< U for i >i,. Assume not. Then there is an x € oV
and a #>0 such that xm,t € 0U. Set s=sup{r:xm;r € dV, 0<7<t}. Since
oV is compact, xm;s € dV. Moreover, (xm;(s, 1)) "\V= . Since xm;s € V,
(xm sy, (t—s)=xmt € 0U, and Vm,;[0, 2¢]<int U, we must have t—s>2e.
But dVm,e<int U. This contradicts

@ = (xm(s,)) NV = ((xm;8)m;(0,t —s)) N V.

This contradiction implies Vm,R*< U for i>i,. It easily follows that
P(V)< U=U. The desired result now follows from Theorem 8.

COROLLARY 10. Let M be a compact set which possesses a fundamental
system of asymptotically stable neighborhoods. Then M is totally stable.

Proor. The proof is an immediate consequence of Corollary 7 and
Theorem 9.

Many questions arise which are, as of now, unanswered:

(1) Is P transitive?

(2) If M is totally stable, is M absolutely stable?

(3) Is there a characterization of total stability similar to the character-
ization of stability under persistent perturbations in [5] and [6], e.g. does
M have a fundamental system of asymptotically stable neighborhoods?

ReMARK. Instead of considering all nets in IT which converge to 7, we
could have proven the same results with respect to a specific net ;. This
would yield a concept of “total stability with respect to .
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