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SECOND  ORDER  ALMOST  LINEAR  FUNCTIONAL
DIFFERENTIAL EQUATIONS—OSCILLATION

HUGO TEUFEL,  JR.

Abstract. It is shown that all solutions of certain second order

nonlinear functional differential equations are oscillatory if all

solutions of an associated minorizing linear equation are oscillatory.

1. Introduction. This note deals with the oscillation of all solutions of

equations

(1) x"(t) + F(t, x(t), x(t - r(t))) = 0

where

(i) F(t, u, c)eC([0, co)xRxR),   uv>0   implies   F(t,u,v)   is   non-

decreasing in u and v, c¿¿0 implies f^raffj, c, c) ds=oo;

(ii) r(t) £ C[0, co), lim sup t(í) = t0<oo as i-»oo; and

(iii) there exists a nonnegative function a(t)eC[0, oo) such that for

some A'o^O and some £>0, |.y|^ A^ implies (\+e)a(t)x':i^xF(t, x, x),

while all solutions of

(2) y" + a(t)y = 0

are oscillatory. In particular, the result holds for the linear equation

x"(t) + a(t)x(t-r(t)) = 0.

In the ensuing the term solution refers only to those solutions of (1)

which exist on some positive half-line. A solution of ( 1 ) or (2) is oscillatory

if it has a zero in each positive half-line. The result to be proven is

Theorem. If (1) satisfies (i), (ii), (iii), then every solution of (1) is

oscillatory. If for all large t-values, t(/)^0, then the result holds ;/e=0.

2. Preliminaries. Part A of the proof is related to a result of Ladas [2]

and holds even if t„=co provided t — r(t)->-co as / *co. Note that

$œsa(s) ds=cc is necessary for the oscillation of all solutions of (2) [7].

Part B makes use of a special case of Grimmer's and Waltman's [1]

generalization of the Sturm Comparison Theorem.
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Comparison Theorem.    Let y(t) satisfy (2) and let x(t) satisfy

(3) x" + û(î)x^0,       x>0,

on (t0, /j) with v(i0)>x(fo)^0, û«o'/(/0)^x'(î0)^0, but not both x(t0)=

x'(t0)=0. Then, y(t)\>x(t) on [t0, fj.

Nonoscillation criteria for the linear case of (1) are discussed by Shere

in [3].

3. The proof. It is clear that if x(r) is a nonoscillatory solution of (1),

then, for any t^Tq, x(t) may be assumed positive on some interval

[T-Tl, oo). Therefore, x"(f)^0 (=á0) on [T, oo), wherefrom follows

x'(/)>0 on the same interval.

A. Certainly there is a c>0 such that x(t)>c on [T, oo) and x(t) satisfies

x"(t)+F(t, c, C)<:0.

After a multiplication by t an integration by parts gives

(4) tx'(t) - x(t) + C +     sF(s, c, c) ds ^ 0,        t > T,
Jt

where C is a constant. If x(t) is bounded above, (i) is contradicted if / is

large enough.

B. Hence, assume x(?)—»-co as r—»-go; and, it may be assumed that

x(t)>X0 on [T, oo). Let the positive £ of (iii) be given.

Integration of x"(r)^0 leads to xiO-xit-rit^^x'iT)^. Thus, there

is a 7\ so large that

(5) (1 + 8)-V0 Ú x(t - r(0),       t>7i;

and x(r) must satisfy (3) on [Tly co). Evidently, £=0 is sufficient if t(í)^0

on some [T1, oo).

Therefore, the Comparison Theorem implies there is an oscillatory

solution of (2) which majorizes x(t) on some positive half-line. There is an

obvious contradiction, and the theorem is proved.

Remarks. (1) This result improves [4], and even in the case r(r)=0,

appears to be new.

(2) P. Waltman has shown [6] how a t(?) which is not bounded above

influences oscillation.

(3) The theorem could have been given for more general equations (1)

having more than one functional argument which may depend explicitly

on x, a', in certain ways. Also, F need not necessarily be nondecreasing in

its x-arguments ([4], [5]).
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