EXISTENCE OF SOLUTIONS OF ABSTRACT MEASURE DIFFERENTIAL EQUATIONS

R. R. SHARMA

ABSTRACT. In an earlier paper the author has introduced an abstract measure differential equation as a generalization of ordinary differential equations and measure differential equations, and proved a theorem for the existence and uniqueness of solutions of this equation. In the present paper the problem of the existence of solutions is further investigated.

1. **Introduction.** An abstract measure differential equation is defined in [3] as follows. Let X be a linear space over the field \mathscr{F} where \mathscr{F} is the set R of real numbers or the set C of complex numbers. For each $x \in X$, define

$$S_x = \{\alpha x : -\infty < \alpha < 1\}, \qquad \bar{S}_x = \{\alpha x : -\infty < \alpha \le 1\} \quad \text{if } \mathscr{F} = R;$$

$$S_x = \{\alpha x : 0 < |\alpha| < 1\}, \qquad \bar{S}_x = \{\alpha x : 0 \le |\alpha| \le 1\} \quad \text{if } \mathscr{F} = C.$$

Let $S \subseteq X$ where if S is a proper subset of X, it is of the form S_{ξ} for some $\xi \in X$. Let \mathscr{M} be a σ -algebra in S containing the sets \overline{S}_x for all $x \in S$. We shall denote by $\operatorname{ca}(S,\mathscr{M})$ the space of all countably additive scalar functions (i.e. real measures or complex measures) on \mathscr{M} . Let $\Omega \subseteq \mathscr{F}$ be defined by

$$\Omega = \{\alpha : |\alpha| < a\}.$$

Abstract measure differential equations are equations of the form

$$(*) d\lambda/d\mu = f(x, \lambda(\bar{S}_x))$$

where μ is a positive σ -finite measure or a complex measure on \mathcal{M} , $d\lambda/d\mu$ is Radon-Nikodym derivative of a measure $\lambda \in \operatorname{ca}(S, \mathcal{M})$ with respect to μ , and f is a function defined on $S \times \Omega$ such that $f(x, \lambda(\overline{S_x}))$ is μ -integrable on S for each $\lambda \in \operatorname{ca}(S, \mathcal{M})$.

The solution of (*) is defined as follows. Let $\alpha_0 \in \Omega$, $x_0 \in S$, $S_{x_0} = X_0 \in \mathcal{M}$ and let \mathcal{M}_0 be the smallest σ -algebra in X_0 containing $S_{x_0} - S_{x_0}$ and the sets S_x for $x \in X_0 - S_{x_0}$. A measure $\lambda \in \operatorname{ca}(X_0, \mathcal{M}_0)$ is called a solution of (*)

Received by the editors September 21, 1971 and, in revised form, November 24, 1971.

AMS 1970 subject classifications. Primary 34G05; Secondary 46G99.

Key words and phrases. Abstract measure differential equation, real measures, complex measures, Radon-Nikodym derivative, total variation measure, pseudometric.

on X_0 with initial data $[\bar{S}_{x_0}, \alpha_0]$ (to be denoted by $\lambda[X_0; \bar{S}_{x_0}, \alpha_0]$) if $\lambda(\bar{S}_{x_0}) = \alpha_0$, $\lambda(E) \in \Omega$ for $E \in \mathcal{M}_0$, $\lambda \ll \mu$ on $X_0 - S_{x_0}$ and λ satisfies (*) a.e. $[\mu]$ on $X_0 - S_{x_0}$.

An existence and uniqueness theorem is proved in [3] where one of the assumptions for f is to satisfy a Lipschitz condition in α . In the present paper the existence of a solution (without claiming its uniqueness) is established by changing some of the assumptions, particularly the Lipschitz condition hypothesis for f is replaced by the continuity of f in α for fixed x. Taking $\operatorname{ca}(X, \mathcal{M})$ to be the space of real measures, maximum and minimum solutions are defined and their existence is demonstrated under the hypotheses of the existence theorem. It may be noted that Theorem 1 of this paper includes and extends [1, Theorem 1.1, p. 43] and Theorem 2 includes and extends [1, Theorem 1.2, p. 45].

2. Existence of solutions. For any $E_1, E_2 \in \mathcal{M}$, we define

(2.1)
$$\rho(E_1, E_2) = |\mu| (E_1 - E_2) + |\mu| (E_2 - E_1)$$

where $|\mu|$ denotes the total variation measure of μ . It is clear that for any $E_1, E_2 \in \mathcal{M}$,

$$\rho(E_1, E_2) \ge 0, \quad \rho(E_1, E_2) = 0 \text{ if } E_1 = E_2, \\
\rho(E_1, E_2) = \rho(E_2, E_1).$$

Also, for any E_1 , E_2 , $E_3 \in \mathcal{M}$, we have

$$\rho(E_1, E_2) \leq \rho(E_1, E_3) + \rho(E_3, E_2),$$

which follows from

$$(E_1 - E_2) \subset (E_1 - E_3) \cup (E_3 - E_2),$$

 $(E_2 - E_1) \subset (E_3 - E_1) \cup (E_2 - E_3).$

The function ρ thus defines a pseudometric for \mathcal{M} .

We shall now prove the following existence theorem.

THEOREM 1. Let $\alpha_0 \in \Omega$, $x_0 \in S$ and let for each $\xi \in S - \overline{S}_{x_0}$ the smallest σ -algebra containing $\overline{S}_{x_0} - S_{x_0}$ and \overline{S}_x , $x \in \overline{S}_{\xi} - S_{x_0}$, be compact in the topology generated by the pseudometric ρ defined by (2.1). Then there exists a solution $\lambda_0 = \lambda_0 [\overline{S}_{x'}; \overline{S}_{x_0}, \alpha_0]$ of (*) for some $x' \in S - \overline{S}_{x_0}$ if the following conditions are satisfied:

- (i) $\mu(S_{x_0}) \neq 0$ and $|\mu|(\bar{S}_x S_x) = 0$ for each $x \in S S_{x_0}$;
- (ii) there exists a μ -integrable function w on S such that $|f(x, \alpha)| \leq w(x)$ uniformly in $\alpha \in \Omega$;
 - (iii) f is continuous in α for each fixed x.

PROOF. Choose a real number r > 1 such that

(2.2)
$$\int_{\bar{S}_{rx_0}-S_{x_0}} w(x) d |\mu| < a - |\alpha_0|.$$

It is possible to choose such a real number r (see the proof of Theorem 1 in [3]).

Let \mathcal{M}_0 be the smallest σ -algebra containing $\bar{S}_{x_0} - S_{x_0}$ and all the sets of the form \bar{S}_x for $x \in \bar{S}_{rx_0} - S_{x_0}$. In what follows, it will always be assumed that $E \in \mathcal{M}_0$. Define measures λ_i by

$$\lambda_{j}(E) = \alpha_{0} \qquad \text{for } E = \overline{S}_{x_{0}},$$

$$= 0 \qquad \text{for } E \subseteq \overline{S}_{x_{0} + \overline{\xi}j} - S_{x_{0}},$$

$$= \int_{E} f(x, \lambda_{j}(\overline{S}_{x - \overline{\xi}j})) d\mu \quad \text{for } E \subseteq \overline{S}_{rx_{0}} - S_{x_{0} + \overline{\xi}j},$$

$$i = 1, 2, \dots,$$

where

$$\xi_i = [(r-1)/i]x_0.$$

Then λ_1 is defined by the first two expressions in (2.3). For any fixed $j \ge 2$, the first and second expressions in (2.3) define λ_j for $E \subseteq \overline{S}_{x_0 + \xi_j}$; and since (x, 0) and $(x, \alpha_0) \in \overline{S}_{rx_0} \times \Omega$, the last expression defines λ_j for $E \subseteq \overline{S}_{x_0 + 2\xi_j} - S_{x_0 + \xi_j}$. λ_j is then defined for $E \subseteq \overline{S}_{x_0 + 2\xi_j}$. Also, for $E \subseteq \overline{S}_{x_0 + 2\xi_j}$, we have

(2.5)
$$|\lambda_{j}(E)| \leq |\alpha_{0}| + \int_{\bar{S}_{Tx_{0}} - S_{x_{0}}} w(x) d |\mu| < a,$$

by condition (ii) and (2.2); and, therefore,

$$\lambda_i(E) \in \Omega.$$

Assume that λ_j is defined for $E \subset \overline{S}_{x_0+k\xi_j}$ when $2 \le k < j$. Then the last expression in (2.3) defines λ_j for $S_{x_0+(k+1)\xi_j} - S_{x_0+k\xi_j}$ and thus λ_j is defined for all $E \subset \overline{S}_{x_0+(k+1)\xi_j}$. Also, for such E's, $\lambda_j(E)$ satisfies (2.5) and hence (2.6) because of condition (ii) and (2.2). Therefore, by induction, (2.3) defines λ_j on \mathcal{M}_0 .

Let E_1 , $E_2 \in \mathcal{M}_0$ be such that $\rho(E_1, E_2) < |\mu|(S_{x_0})$. Then \bar{S}_{x_0} is a subset either of both E_1 and E_2 or of neither of E_1 and E_2 . For, otherwise,

$$\rho(E_1, E_2) = |\mu| (E_1 - E_2) + |\mu| (E_2 - E_1) \ge |\mu| (S_{s_0}).$$

It can be verified that either

$$\lambda_i(E_1) - \lambda_i(E_2) = 0$$

or else

$$\lambda_{j}(E_{1}) - \lambda_{j}(E_{2}) = \int_{E_{1}-E_{2}} f(x, \lambda_{j}(\bar{S}_{x-\xi_{j}})) d\mu - \int_{E_{2}-E_{1}} f(x, \lambda_{j}(\bar{S}_{x-\xi_{j}})) d\mu,$$

and therefore, by condition (ii),

(2.7)
$$|\lambda_{j}(E_{1}) - \lambda_{j}(E_{2})| < \int_{E_{1} - E_{2}} w(x) d |\mu| + \int_{E_{2} - E_{1}} w(x) d |\mu|$$

$$= \int_{(E_{1} - E_{2}) \cup (E_{2} - E_{1})} w(x) d |\mu|.$$

By Dunford and Schwartz [2, Theorem 20, p. 114], if

(2.8)
$$v(E) = \int_E w(x) d|\mu|$$

then

$$\lim_{|\mu|(E)\to 0}\nu(E)=0.$$

This implies that the function ν defined by (2.8) is continuous (and hence uniformly continuous) on the compact pseudometric space \mathcal{M}_0 . From the uniform continuity of ν on \mathcal{M}_0 , it follows from (2.7) that given any $\varepsilon > 0$, there exists a $\delta(\varepsilon)$, $0 < \delta$ ($< |\mu|(S_{x_0})$) such that $|\lambda_j(E_1) - \lambda_j(E_2)| < \varepsilon$ whenever $|\mu|(E_1 - E_2) + |\mu|(E_2 - E_1) = \rho(E_1, E_2) < \delta$; i.e. $\{\lambda_j\}$ is an equicontinuous set. Moreover, $\{\lambda_j\}$ is uniformly bounded since, by (2.5), we have

(2.9)
$$\sup_{E \in \mathcal{M}_0} |\hat{\lambda}_j(E)| \leq |\alpha_0| + \int_{\bar{S}_{rx_0} - S_{x_0}} w(x) \, d \, |\mu| < a.$$

Therefore, it follows by the Arzela-Ascoli theorem [2, p. 266] that $\{\lambda_j\}$ is conditionally compact in the space $C(\mathcal{M}_0)$ of all bounded continuous scalar functions on \mathcal{M}_0 . Hence there exists a subsequence $\{\lambda_{j_k}\}$ of $\{\lambda_j\}$ and a function $\lambda_0 \in C(\mathcal{M}_0)$ such that $\lambda_{j_k} \to \lambda_0$ uniformly on \mathcal{M}_0 as $k \to \infty$. And since

$$\rho(\bar{S}_{x-\xi_{1x}}, \bar{S}_x) = |\mu| (\bar{S}_x - \bar{S}_{x-\xi_{1x}}) \to |\mu| (\bar{S}_x - \bar{S}_x) = 0,$$

by condition (i) it follows that $\lambda_{j_k}(\bar{S}_{x-\xi_{j_k}}) \rightarrow \lambda_0(\bar{S}_x)$. Also, by (2.9), $\lambda_0(E) \in \Omega$ for $E \in \mathcal{M}_0$. Hence the continuity of f in α for fixed x (condition (iii)) implies

(2.10)
$$\lim_{k \to \infty} f(x, \lambda_{j_k}(\overline{S}_{x-\xi_{j_k}})) = f(x, \lambda_0(\overline{S}_x)).$$

From (2.10) and condition (ii), it follows by Lebesgue's dominated convergence theorem that

$$\lim_{k \to \infty} \int_E f(x, \lambda_{j_k}(\bar{S}_{x-\xi_{j_k}})) d\mu = \int_E f(x, \lambda_0(\bar{S}_x)) d\mu.$$

Now replacing j by j_k in (2.3) and letting $k \rightarrow \infty$, we obtain

(2.11)
$$\lambda_0(E) = \alpha_0 \qquad \text{for } E = \overline{S}_{x_0},$$

$$= \int_E f(x, \lambda_0(\overline{S}_x)) d\mu \quad \text{for } E \subseteq \overline{S}_{rx_0} - S_{x_0}.$$

Thus λ_0 satisfies (*) a.e. $[\mu]$ on $\bar{S}_{rx_0} - S_{x_0}$. It also follows from (2.11) that λ_0 is countably additive on \mathcal{M}_0 . Hence λ_0 is a solution of (*) on \bar{S}_{rx_0} with initial condition $\lambda_0(\bar{S}_{x_0}) = \alpha_0$. This completes the proof.

3. Maximum and minimum solutions. In this section we shall be concerned with real measures only and so $ca(S, \mathcal{M})$ will now denote the space of real measures on \mathcal{M} . Let α_0 , x_0 , X_0 and \mathcal{M}_0 be the same as in §1. Let Λ be the set of all solutions of (*) on X_0 with initial data $[\overline{S}_{x_0}, \alpha_0]$. Definition. A maximum solution of (*) on X_0 with initial data $[\overline{S}_{x_0}, \alpha_0]$ is a solution $\lambda_M \in \Lambda$ with the property

$$\lambda(E) \leq \lambda_M(E) \qquad (E \in \mathcal{M}_0)$$

for each $\lambda \in \Lambda$. Similarly, $\lambda_m \in \Lambda$ will be called a minimum solution of (*) on X_0 with initial data $[S_{x_0}, \alpha_0]$ if

$$\lambda(E) \ge \lambda_m(E) \qquad (E \in \mathcal{M}_0)$$

for each $\lambda \in \Lambda$.

We shall now establish the existence of λ_M and λ_m under the assumptions of Theorem 1.

THEOREM 2. Let the hypotheses of Theorem 1 be satisfied. Then there exist a maximum solution λ_M and a minimum solution λ_m of (*) on $X_0 = \overline{S}_{rx_0}$ (\overline{S}_{rx_0} being defined by (2.2)) with initial data [\overline{S}_{x_0} , α_0].

PROOF. Define $\lambda^*(E) = \sup_{\lambda \in \Lambda} {\{\lambda(E)\}}$ $(E \in \mathcal{M}_0)$. We shall prove that λ^* is a maximal solution λ_M .

Clearly $\lambda^*(\bar{S}_{x_0}) = \alpha_0$ and $\bar{\lambda}^* \ll \mu$ on $X_0 - S_{x_0}$. By condition (ii) of Theorem 1, each $\lambda \in \Lambda$ satisfies the inequality

(3.1)
$$|\lambda(E)| < |\alpha_0| + \int_{S_{Fx_0} - S_{x_0}} w(x) \ d \ |\mu| \qquad (E \in \mathcal{M}_0).$$

And, since

$$|\lambda^*(E)| = \left| \sup_{\lambda \in \Lambda} \lambda(E) \right| \le \sup_{\lambda \in \Lambda} |\lambda(E)| \quad (E \in \mathcal{M}_0).$$

it follows from (3.1) and (2.2) that $\lambda^*(E) \in \Omega$ for each $E \in \mathcal{M}_0$.

We shall now show that λ^* satisfies (*) a.e. $[\mu]$ on $X_0 - S_{x_0}$. It can be shown, in the same way as the equicontinuity of $\{\lambda_j\}$ was demonstrated in the proof of Theorem 1, that Λ is an equicontinuous set. Thus, given any

 $\varepsilon>0$, there exists a $\delta=\delta(\varepsilon)>0$ such that $E_1,\ E_2\in\mathcal{M}_0$ and $\rho(E_1,E_2)<\delta$ imply

$$(3.2) |\lambda(E_1) - \lambda(E_2)| < \varepsilon \text{for each } \lambda \in \Lambda,$$

and hence

$$|\lambda^*(E_1) - \lambda^*(E_2)| = \left| \sup_{\lambda \in \Lambda} \lambda(E_1) - \sup_{\lambda \in \Lambda} (E_2) \right|$$

$$\leq \left| \sup_{\lambda \in \Lambda} \left(\lambda(E_1) - \lambda(E_2) \right) \right|$$

$$\leq \sup_{\lambda \in \Lambda} |\lambda(E_1) - \lambda(E_2)| \leq \varepsilon.$$

Let $x_1, x_2, \dots, x_n = rx_0$ be such that

(3.4)
$$\bar{S}_{x_{i-1}} \subset \bar{S}_{x_i}$$
 and $\max |\mu| (\bar{S}_{x_i} - S_{x_{i-1}}) < \delta$, $(i = 1, 2, \dots, n)$.

For the given ε , choose a $\lambda_i \in \Lambda$ for each x_i $(i=0, 1, \dots, n-1)$ so that

$$0 \leq \lambda^*(\bar{S}_{x_i}) - \lambda_i(\bar{S}_{x_i}) \leq \varepsilon,$$

and for $i \ge 1$

$$\lambda_i(\bar{S}_{x_i}) - \lambda_{i-1}(\bar{S}_{x_i}) \ge 0.$$

This is possible from the definition of λ^* .

Now define a function λ_{ϵ} as follows: Let $\lambda_{\epsilon}(E) = \lambda_{n-1}(E)$ for $E \subset \overline{S}_{rx_0} - S_{x_{n-1}}$ $(E \in \mathcal{M}_0)$. If $\lambda_{n-1}(\overline{S}_{x_{n-1}}) > \lambda_{n-2}(\overline{S}_{x_{n-1}})$, let x'_{n-2} (if it exists) be such that

$$x'_{n-2} \in S_{x_{n-1}} - \bar{S}_{x_{n-2}}, \quad \lambda_{n-1}(\bar{S}_{x'_{n-2}}) = \lambda_{n-2}(\bar{S}_{x'_{n-2}})$$

and if x_{n-2}'' also satisfies these conditions then $S_{x_{n-2}'} \supset S_{x_{n-2}''}$. If such an x_{n-2}' does not exist, let $x_{n-2}' = x_{n-2}$. If $\lambda_{n-1}(S_{x_{n-1}}) = \lambda_{n-2}(S_{x_{n-1}})$, let $x_{n-2}' = x_{n-1}$. Define

$$\begin{split} \lambda_{\varepsilon}(E) &= \lambda_{n-1}(E) & \text{for } E \subseteq S_{x_{n-1}} - S_{x_{n-2}'}, \\ &= \lambda_{n-2}(E) & \text{for } E \subseteq S_{x_{n-2}'} - S_{x_{n-2}}; \end{split} \quad (E \in \mathcal{M}_0)$$

and

$$\begin{split} \lambda_{\varepsilon}(\bar{S}_{x_{n-2}^{'}}) &= \lambda_{n-2}(\bar{S}_{x_{n-2}^{'}}) \quad \text{when } x_{n-2}^{'} \in \bar{S}_{x_{n-1}} - \bar{S}_{x_{n-2}}, \\ &= \lambda_{n-1}(\bar{S}_{x_{n-2}^{'}}) \quad \text{when } x_{n-2}^{'} = x_{n-2}. \end{split}$$

If $\lambda_{\epsilon}(\bar{S}_{x_{n-2}}) > \lambda_{n-3}(\bar{S}_{x_{n-2}})$, let x'_{n-3} (if it exists) $\in S_{x_{n-2}} - \bar{S}_{x_{n-3}}$ be such that

$$\begin{split} \lambda_{n-3}(\bar{S}_{x_{n-3}'}) &= \lambda_{n-2}(\bar{S}_{x_{n-3}'}) & \text{ when } x_{n-2}' \in \bar{S}_{x_{n-1}} - \bar{S}_{x_{n-2}}, \\ &= \lambda_{n-1}(\bar{S}_{x_{n-3}'}) & \text{ when } x_{n-2}' = x_{n-2}; \end{split}$$

and if x''_{n-3} be any point with this property then $\overline{S}_{x'_{n-3}} \supset \overline{S}_{x''_{n-3}}$. If such an x'_{n-3} does not exist, let $x'_{n-3} = x_{n-3}$. If $\lambda_{\epsilon}(\overline{S}_{x_{n-2}}) = \lambda_{n-3}(S_{x_{n-2}})$, let $x'_{n-3} = x_{n-2}$. Define

$$\begin{split} \lambda_{\epsilon}(E) &= \lambda_{n-1}(E) & \text{ for } E \subseteq S_{x_{n-2}} - S_{x_{n-3}^{'}} & \text{ when } x_{n-2}^{'} = x_{n-2}, \\ &= \lambda_{n-2}(E) & \text{ for } E \subseteq S_{x_{n-2}} - S_{x_{n-3}^{'}} & \text{ when } x_{n-2}^{'} \in S_{x_{n-1}} - \bar{S}_{x_{n-2}}, \\ &= \lambda_{n-3}(E) & \text{ for } E \subseteq S_{x_{n-3}^{'}} - S_{x_{n-3}} \end{split}$$

Continuing in this way a function λ_{ϵ} can be defined on all sets $E \in \mathcal{M}_0$ such that E is a subset of one of the sets

$$(3.5) \quad S_{x_i'} - S_{x_i}, \quad S_{x_{i+1}} - S_{x_i'}, \quad \overline{S}_{rx_0} - S_{x_{n-1}} \quad (i = 0, 1, \dots, n-2).$$

Also, define $\lambda_{\epsilon}(\bar{S}_{x_0}) = \alpha_0$. Now extend the definition of λ_{ϵ} on \mathcal{M}_0 by countable-additivity; i.e. if $E \ (\in \mathcal{M}_0) \subset \bar{S}_{rx_0} - S_{x_0}$, define

(3.6)
$$\lambda_{\varepsilon}(E) = \sum_{i=0}^{n-2} \lambda_{\varepsilon}(E \cap (S_{x_{i}'} - S_{x_{i}})) + \sum_{i=0}^{n-2} \lambda_{\varepsilon}(E \cap (S_{x_{i+1}} - S_{x_{i}'})) + \lambda_{\varepsilon}(E \cap (\bar{S}_{rx_{0}} - S_{x_{n-1}})).$$

Now it can be easily seen that λ_{ϵ} is a solution in Λ having the property:

$$(3.7) 0 \leq \lambda^*(\bar{S}_{x_i}) - \lambda_{\varepsilon}(\bar{S}_{x_i}) \leq \varepsilon (i = 0, 1, \dots, n).$$

Furthermore, if $E \in \mathcal{M}_0$ is a subset of one of the sets in (3.5), it follows from (3.2), (3.3), (3.4) and (3.7) that

$$(3.8) 0 \leq \lambda^*(E) - \lambda_{\varepsilon}(E) < 3\varepsilon.$$

Letting $\varepsilon = 1/m$ $(m=1, 2, \cdots)$, we obtain a sequence $\lambda_{1/m}$ of solutions such that

(3.9)
$$\lim_{m \to \infty} \lambda_{1/m}(E) = \lambda^*(E)$$

where $E \in \mathcal{M}_0$ is a subset of one of the sets in (3.5). For $E \in \mathcal{M}_0 \subset S_{rx_0} - S_{x_0}$, we have

(3.10)
$$\hat{\lambda}^*(E) \ge \lim_{m \to \infty} \lambda_{1/m}(E) = \sum_{i=0}^{n-2} \lambda^*(E \cap (S_{x_i'} - S_{x_i})) + \sum_{i=0}^{n-2} \lambda^*(E \cap (S_{x_{i+1}} - S_{x_i'})) + \lambda^*(E \cap (\overline{S}_{x_{i+1}} - S_{x_{n-1}})),$$

by (3.6) and (3.9). Also,

$$\lambda^*(E) = \sup_{\lambda \in \Lambda} \lambda(E)$$

$$= \sup_{\lambda \in \Lambda} \left\{ \sum_{i=0}^{n-2} \lambda(E \cap (S_{x_i'} - S_{x_i})) + \sum_{i=0}^{n-2} \lambda(E \cap (S_{x_{i+1}} - S_{x_i'})) + \lambda(E \cap (\bar{S}_{rx_0} - S_{x_{n-1}})) \right\}$$

$$\leq \sum_{i=0}^{n-2} \lambda^*(E \cap (S_{x_i'} - S_{x_i})) + \sum_{i=0}^{n-2} \lambda^*(E \cap (S_{x_{i+1}} - S_{x_i'})) + \lambda^*(E \cap (\bar{S}_{rx_0} - S_{x_{n-1}})).$$

(3.10) and (3.11) yield

(3.12)
$$\lambda^*(E) = \lim_{m \to \infty} \lambda_{1/m}(E) \qquad (E \in \mathscr{M}_0).$$

Now, since $\lambda_{1/m} \in \Lambda$,

$$\lambda_{1/m}(E) = \int_E f(x, \, \lambda_{1/m}(\bar{S}_x)) \, d\mu, \qquad E \subset \bar{S}_{rx_0} - S_{x_0} \quad (E \in \mathcal{M}_0).$$

Taking limits as $m \to \infty$, it follows from (3.12) and conditions (ii) and (iii), using Lebesgue's dominated convergence theorem, that

$$\lambda^*(E) = \int_E f(x, \lambda^*(\bar{S}_x)) d\mu \quad \text{for } E \subseteq \bar{S}_{rx_0} - S_{x_0} \quad (E \in \mathcal{M}_0).$$

 λ^* is thus a maximum solution of (*).

Similarly, if we define $\lambda_*(E) = \inf_{\lambda \in \Lambda} {\{\lambda(E)\}}$ $(E \in \mathcal{M}_0)$, it can be proved that λ_* is a minimum solution of (*).

This completes the proof.

REFERENCES

- 1. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 16, 1022.
- 2. N. Dunford and J. T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 3. R. R. Sharma, An abstract measure differential equation, Proc. Amer. Math. Soc. 32 (1972), 503-510.

DEPARTMENT OF MATHEMATICS, REGIONAL INSTITUTE OF TECHNOLOGY, JAMSHEDPUR, INDIA