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EXISTENCE  OF  SOLUTIONS  OF  ABSTRACT

MEASURE  DIFFERENTIAL EQUATIONS

R.   R.  SHARMA

Abstract. In an earlier paper the author has introduced an

abstract measure differential equation as a generalization of ordinary

differential equations and measure differential equations, and

proved a theorem for the existence and uniqueness of solutions of

this equation. In the present paper the problem of the existence of

solutions is further investigated.

1. Introduction. An abstract measure differential equation is defined in

[3] as follows. Let X be a linear space over the field J5" where ¿F is the set

R of real numbers or the set C of complex numbers. For each x e X, define

Sx = {ax:-co < a < 1},        Sx = {ax: -co < a <| 1]    if & = R,

Sx = {ax:0 < |a| < 1}, Sx = {ax:0 ^ |a| <; 1}        if & = C.

Let Se x where if 5 is a proper subset of X, it is of the form St for some

f £ X. LetJK be a a-algebra in S containing the sets Sx for all x e S. We

shall denote by ca(S, Jt) the space of all countably additive scalar

functions (i.e. real measures or complex measures) on. #. Let ßcj be

defined by

_ Q = {a:|a| < a}.

Abstract measure differential equations are equations of the form

(*)    , dX\dpt=f(x,}ASx))

where /u is a positive a-finite measure or a complex measure on ^k',

dX/dfi is Radon-Nikodym derivative of a measure A e ca(S, -#) with

respect to /u, and/is afunction defined on SxD. such that/(x, X(SX)) is

/^-integrable on S for each A £ ca(5, ^#).

The solution of (*) is defined as follows. Let a0 £ LI, x0 e S, Sx ~X0e^£

and let^#0 be the smallest oalgebra in X0 containing S- — Sx and the sets

Sx for x e X0 — Sx<¡. A measure A £ caíA'o, -J(ü) is called a solution of (*)
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on X0 with initial data [Sx¡¡, a0] (to be denoted by X[X0; Sx¡¡, oc0]) if X(SX¡¡) =

a0, X(E) e Q. for E e „#0, A«,« on X0—SX(¡ and X satisfies (*) a.e. \p] on

An existence and uniqueness theorem is proved in [3] where one of

the assumptions for/is to satisfy a Lipschitz condition in a. In the present

paper the existence of a solution (without claiming its uniqueness) is

established by changing some of the assumptions, particularly the

Lipschitz condition hypothesis for /is replaced by the continuity of/in

a for fixed x. Taking ca(A\ JK) to be the space of real measures, maximum

and minimum solutions are defined and their existence is demonstrated

under the hypotheses of the existence theorem. It may be noted that

Theorem 1 of this paper includes and extends [1, Theorem 1.1, p. 43] and

Theorem 2 includes and extends [1, Theorem 1.2, p. 45].

2. Existence of solutions.    For any £l5 E2 e Ji, we define

(2.1) p(Eu E2) = \p\ (E, - £2) + \p\ (E2 - Ex)

where |,uj denotes the total variation measure of ¡x. It is clear that for any

EuE2e^,

P(E1,Ei)^0,       p(F1,£2) = 0   iîE^E,,

p(Eu E2) = p(E2, EJ.

Also, for any £l5 £2, £3 eJ(, we have

p(Elt E2) ^ p(Elt E3) + p(E3, £2),

which follows from

(E, - £2) c= {E1 - £3) u (£3 - £2),

(£2 - EL) c (£3 - £,) u (£2 - £3).

The function p thus defines a pseudometric for ^#.

We shall now prove the following existence theorem.

Theorem 1. Let a0 g Q, x0 g 5 and let for each f e S — Sx the smallest

a-algebra containing Sx — Sx and Sx, x e S^ — Sx , be compact in the

topology generated by the pseudometric p defined by (2.1). Then there

exists a solution ?.0=X0[SX.; Sx¡¡, a0] of (*) for some x e S—Sx if the

following conditions are satisfied:

(i) /n(SXo)y¿0 and \/u\(5x-Sx)=0for each x e S-SX(¡;

(ii) there exists a /u-integrable function w on S such that |/(x, a)|<vv(x)

uniformly in a g O ;

(iii) fis continuous in a for each fixed x.
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Proof.    Choose a real number r>\ such that

(2.2) Í w(x) d \p\< a - K|.

It is possible to choose such a real number r (see the proof of Theorem 1

in [3]).

Let ..#„ be the smallest cr-algebra containing Sx¡)—Sx<¡ and all the sets

of the form Sx for x £ SrXíi—Sx¡¡. In what follows, it will always be assumed

that £e^#0. Define measures X¡ by

X¡{E) = a0 for E = Sx ,

= 0 for £ c ^o+ii - Sv

=j /(*, */£_*,)) <//i    for £ c SrXo - Sx<¡+h,

i= 1,2, •••,
where

(2.4) I, = [(r - l)/;]x0.

Then Ax is defined by the first two expressions in (2.3). For any fixed

y'^2, the first and second expressions in (2.3) define X¡ for £c^+?;

and since (x, 0) and (x, a0) £ SrXt¡xí¿, the last expression defines A; for

E^SXo+2srSXä+h. Xj is then defined for E<=:SXo+n.. Also, for £ci^(,

we have

(2.5) |A;(£)| ̂  lot«| + Í w(x) d \p\ < a,

by condition (ii) and (2.2); and, therefore,

(2.6) A;(£) £ Q.

Assume that X¡ is defined for E<=-Sx+k? when 2<k<j. Then the last

expression in (2.3) defines X¡ for Sx +ot+i)£ — S¡. +kç. and thus X¡ is defined

for all £c5Io+(i+1),.. Also, for such £'s, A;(£) satisfies (2.5) and hence

(2.6) because of condition (ii) and (2.2). Therefore, by induction, (2.3)

defines X¡ on ^#0.

Let £,, £2£.^#0 be such that p(£,, E2)<\fj](SXo). Then 5^ is a subset

either of both Ex and £2 or of neither of £, and £2. For, otherwise,

p(£1; £2) = \p\ (£, - £2) + \n\ (E, - £,) ^ |p| (5Xo).

It can be verified that either

A,(£,) - /,(£,) = 0
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or else

A/^) - X,(L2) = | /(x, A/^_f,)) dfi-(        /(x, USx.h)) dp,

and therefore, by condition (ii),

|A,(£i) - ¿,(£a)l < Í        vv(x) d\/i\ + (        w(x) d |/*|

(2.7) '
= w(x) d |/i|.

By Dunford and Schwartz [2, Theorem 20, p. 114], if

(2.8) v(E) = fw(x)d\p\

then

lim   v(E) = 0.

This implies that the function v defined by (2.8) is continuous (and hence

uniformly continuous) on the compact pseudometric space ^#0. From the

uniform continuity of j» on .-#<,, it follows from (2.7) that given any £>0,

there exists a ó(e), 0<ô (<\/i\ (SXt¡)) such that | A,^)—A,,.(£2)| <£ whenever

\fi\{El—E2)+ \n\<E2—El)=p(E1,E2)<ô; i.e. {A,-} is an equicontinuousset.

Moreover, {A,} is uniformly bounded since, by (2.5), we have

(2.9) sup |//£)| ^ |a0| + w(x) d \¡x\ < a.
Ke.Mo Jgr?0-Sx0

Therefore, it follows by the Arzela-Ascoli theorem [2, p. 266] that {A,} is

conditionally compact in the space C(^#0) of all bounded continuous

scalar functions on JK0. Hence there exists a subsequence {A,- } of {X,}

and a function A0 g C(-#0) such that A;i—>-A0 uniformly on ^0 as k—+co.

And since

p(Sx-îit, Sx) = |/í| (Sx - Sx^jk) -- \p\ (Sx - Sx) = 0,

by condition (i) it follows that XJk(Sx^¡k)->X0(Sx). Also, by (2.9), A0(£) e Q

for Ee.J/0. Hence the continuity of/in a for fixed x (condition (iii))

implies

(2.10) lim f(x, X,(S^)) = fix, X0iSx)).
k -» x

From (2.10) and condition (ii), it follows by Lebesgue's dominated

convergence theorem that

lim  |   f{x, ^(S^)) 4" = [ /(x' k»(Sx)) df*-
k-* s Je Je
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Now replacing/ by jk in (2.3) and letting /V—»oo, we obtain

A0(£) = a0 for £ = 5^,

(2-11) = f fix, X0(SX)) dp   for £ c S„  - S,
JE " "

Thus A0 satisfies (*) a.e. [/¿] on SrXo—Sx<¡. It also follows from (2.11) that

A0 is countably additive on ,.#0. Hence A0 is a solution of (*) on Srx with

initial condition A0(5Xo) = a0. This completes the proof.

3. Maximum and minimum solutions. In this section we shall be con-

cerned with real measures only and so ca(5, ^#) will now denote the

space of real measures on J(. Let a„, x0, X0 and ^£0 be the same as in

§1. Let A be the set of all solutions of (*) on X0 with initial data [Sx , a0].

Definition. A maximum solution of (*) on X0 with initial data

[Sx , a0] is a solution A u £ A with the property

A(£)^AU(£)       (££^o)

for each A £ A. Similarly, Am £ A will be called a minimum solution of (*)

on X0 with initial data [Sx , a0] if

X(E)^Xm(E)       {EeJK0)
for each A 6 A.

We shall now establish the existence of A v and Xm under the assump-

tions of Theorem 1.

Theorem 2. Let the hypotheses of Theorem 1 be satisfied. Then there

exist a maximum solution XM and a minimum solution Xm of (*) on

X0=STXq (SrXo being defined by (2.2)) with initial data [5     a0].

Proof. Define A*(£)=supAeA{A(£)j (££.#„). We shall prove that

A* is a maximal solution An/.

Clearly X*(SXo) = tx.0 and X*«p on X0 — SXi¡. By condition (ii) of Theorem

1, each A £ A satisfies the inequality

(3.1) |A(£)| < |a0| +

And, since

|A*(£) sup A(£)

w(x)d\p\      (£eJ?0).
-Sxn

^sup|A(£)|       (EeJia).

it follows from (3.1) and (2.2) that A*(£) £ Q. for each £ c. //„.

We shall now show that A* satisfies (*) a.e. [p.] on .V0—Sx . It can be

shown, in the same way as the equicontinuity of {Aj was demonstrated in

the proof of Theorem 1, that A is an equicontinuous set. Thus, given any
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£>0, there exists a o = r)(e)>0 such that £lT E2e^0 and p(Ei, E2)<6

imply

\X{Ef) - A(£2)| < e       for each A £ A,(3.2)

and hence

(3.3)

|A*(£,) - A*(£2)| =

<

sup X(Ef) — sup (£2)
/leA AeA

sup (A(£x) - A(£2))

^ sup |A(£X) - A(£2)| ^ £.
;.€A

Let x,, x2, • ■ ■ , x„=rx0 be such that

(3.4)    Sx¡i c Sx¡    and    max \p\ (S.t - Sx¡ J <ó,    (i = 1, 2, • • • , ri).

For the given s, choose a X¿ £ A for each x, (/=0, 1, ■ • • , «—1) so that

0 ^ X*(SX) - Xt(Sx) ^ s,

MS.) - Xi-iiSj ^ 0.
and for i > 1

This is possible from the definition of A*.

Now define a function A£ as follows: Let Xe(E) = X„_1(E) for £<=

SrXo~SXn^ (££.#„). If Xn^(SXn l)>A„_2(cTa:n_i), let x;_2 (if it exists) be

such that

X„_o  £ ij.r Ox Xn-i(5x' .) = A„_20v   )

and if x",_2 also satisfies these conditions then Sx- ^>SX" . If such an

x'„_2 does not exist, let x'„_2=x„_2. If X„^(SXrt„1)=Â„_2(^n_]), let x'„_2=

x„_,. Define

AE(£) = /„.,(£)    for £ <= s.^ - S,;

= /„_*(£)    for £ c S,-     - Sc"
(EeJt0)

and

Ae(S,-   ) = A,,_2(.!v_ )   when xj,_, e Sx _ — Sx    ,

= A,^^^-   )    when x¡,_2 = x„_2.

If XS(SX> „)>X,l.i(SXn .,), let x'„^3 (if it exists) £ SXn a—5a   a be such that

¿«-siS*; ,) = ^«-2Í^;_8)   when *i,-2 6 S^ , - $*„_,.

= A„_!(5,-   )    when x;,_, = x„_,;
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and if x"n_z be any point with this property then Sx' zzSx'¿ . If such an

x;_3 does not exist, let x'„_3=x„_3. If Xe(SXn J)=A„_3(Sa,n ä), \etx'n_3=xn_2.

Define

k(E) = K-AE)   for E c s*     - sx' ,   when x'n_.¿ = xB_a,

= A„_2(£)   for £ c S,n 2 - Sy _3   when x^2 g S,n ; - S,^,

= An_3(£)   for EcS,"    -S,   ,
n—3 n-3

(£e^0).

Continuing in this way a function A£ can be defined on all sets £ ieJKa)

such that £ is a subset of one of the sets

(3.5)     Sx. - Sx¡,    SX(+i - Sx.,    5„o - SXn¡    ii = 0, 1, • • • , n - 2).

Also, define Xt(Sx)=ct0. Now extend the definition of A£ on Jtü by

countable-additivity; i.e. if £ (e^0)c§rx¡¡ — Sx¡¡, define

n 6)   K(E) = 2 ^£ n (sv - M + 2 UE n (S,( f - s,4.))

+ A£(£ n iSTXo - SXni)).

Now it can be easily seen that A£ is a solution in A having the property:

(3.7) 0 ^ X*iSx) - XsiSx) ^e       (/ = 0, 1, • ■ • , n).

Furthermore, if £ (g^#0) is a subset of one of the sets in (3.5), it follows

from (3.2), (3.3), (3.4) and (3.7) that

(3.8) 0 ^ A*(£) - A,(£) < 3e.

Letting e—\¡m (w=l,2, •••), we obtain a sequence Xi/m of solutions

such that

(3.9) lim XVmiE) = /*(£)
m-* oo

where £ (&.^u) is a subset of one of the sets in (3.5). For £ (g^#0)c

5rr — Sr . we have

n—2

A*(£) ̂ lim XVJE) = 2 A*(£ n (S,. - S, ))

(3.10) '"7_2

+ 2 ¿*( F n ( s,.    - S-:)) + A*( £ n {S„  - Sx   )),
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by (3.6) and (3.9). Also,

A*(£) = sup A(£)
;.> a

sup ' / Asup  Y A(£ n (Sx. - S,.)) + %X(En (Sx+j - Sx,))
*eA   '/-O i=0

(3.11) + A(£ n (S^ - SXnJ¡\

< § A*(£ n (S,; - S,)) + 2 A*(£ n (5,i+i - S.f.))
i-0 i=0

+ A*(£ n(5r¡ro- S^J).

(3.10) and (3.11) yield

(3.12) /*(£) = lim A1/m(£)       (£e^0).
m-> co

Now, since Xl¡m £ A,

= í fix, Xu
Je

h,m(E) =    f(x, X1/m(Sx)) dp,       £ c S    - S      (£ £^o).
Je ° °

Taking limits as m-^co, it follows from (3.12) and conditions (ii) and

(iii), using Lebesgue's dominated convergence theorem, that

A*(£) =   f f(x, X*(SX)) dp    for Ec: Srx  - Sx     (£ euf,).

A* is thus a maximum solution of (*).

Similarly, if we define A;(;(£) = inf;6A{A(£)} (££^0), it can be proved

that A„. is a minimum solution of (*).

This completes the proof.
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