BOUNDARY ZERO SETS OF A^{∞} FUNCTIONS SATISFYING GROWTH CONDITIONS

B. A. TAYLOR AND D. L. WILLIAMS

ABSTRACT. Let A denote the algebra of functions analytic in the open unit disc D and continuous in D, and let

$$A^{\infty} = \{ f \in A : f^{(n)} \in A, n = 0, 1, 2, \cdots \}.$$

For $f \in A$ denote the set of zeros of f in \bar{D} by $Z^0(f)$, and for $f \in A^{\infty}$ let $Z^{\infty}(f) = \bigcap_{n=0}^{\infty} Z^0(f^{(n)})$. We study the boundary zero sets of A^{∞} functions F satisfying, for some sequence $\{M_n\}$ and some B > 0,

(1)
$$|F^{(n)}(z)| \leq n! B^n M_n, \quad z \in \bar{D}, n = 0, 1, 2, \cdots$$

In particular, when $M_n = \exp(n^p)$, p > 1, it is shown that for E, a proper closed subset of ∂D , there exists $F \in A^{\infty}$ satisfying (1) and with $Z^0(F) = Z^{\infty}(F) = E$ if and only if $\int_{-\pi}^{\pi} |\log \rho(e^{i\theta}, E)|^q d\theta < +\infty$. Here $\rho(z, E)$ is the distance from z to E and (1/p) + (1/q) = 1.

Let A denote the algebra of functions analytic in the open unit disc D and continuous in \bar{D} , and let $A^{\infty} = \{ f \in A : f^{(n)} \in A, n = 0, 1, 2, \cdots \}$. For $f \in A$ denote the set of zeros of f in \bar{D} by $Z^{0}(f)$, and for $f \in A^{\infty}$ let $Z^{\infty}(f) = \bigcap_{n=0}^{\infty} Z^{0}(f^{(n)})$. We study the boundary zero sets of A^{∞} functions F satisfying, for some sequence $\{M_n\}$ and some B > 0,

(1)
$$|F^{(n)}(z)| \leq n! B^n M_n, \quad z \in \bar{D}, n = 0, 1, 2, \cdots$$

In particular, when $M_n = \exp(n^p)$, p > 1, it is shown that for E, a proper closed subset of ∂D , there exists $F \in A^{\infty}$ satisfying (1) and with $Z^0(F) = Z^{\infty}(F) = E$ if and only if $\int_{-\pi}^{\pi} |\log \rho(e^{i\theta}, E)|^q d\theta < +\infty$. Here $\rho(z, E)$ is the distance from z to E and (1/p) + (1/q) = 1.

Before outlining the construction which yields the result stated above, let us recall some known facts and make a few simple observations. If $f \in A$, $f \not\equiv 0$, and satisfies a Lipschitz condition of order α , $|f(z)-f(z')| \leq$

Received by the editors May 21, 1970 and, in revised form, May 15, 1971. AMS 1970 subject classifications. Primary 30A08, 30A78; Secondary 30A98.

Key words and phrases. Boundary zeros of analytic functions, sets of uniqueness, spaces of analytic functions, quasi-analytic classes.

 $C|z-z'|^{\alpha}$, then $\log |f(z)| \le \alpha \log \rho(z, Z^{0}(f)) + \log C$; and, consequently, $\int_{-\pi}^{\pi} \log \rho(e^{i\theta}, Z^{0}(f)) d\theta > -\infty$ by Riesz's theorem. Conversely, Carleson [1] showed that if $E \subseteq \partial D$ is closed and

(2)
$$\int_{-\pi}^{\pi} \log \rho(e^{i\theta}, E) d\theta > -\infty,$$

then for any m>0 there exists an outer function

$$F \in A^m = \{ f \in A : f, f', \cdots, f^{(m)} \in A \}$$

such that $Z^0(F)=Z^0(F')=\cdots=Z^0(F^{(m)})=E$. This result has been extended to show that there exists an F in A^{∞} with $Z^0(F)=Z^{\infty}(F)=E$ (see [5], [6], or [7]). The extension is also a consequence of a recent theorem of Carleson and S. Jacob, which implies that an outer function $F \in A$ with $|F| \in C^{\infty}(\partial D)$ belongs to A^{∞} .

In case F satisfies the stronger hypothesis (1) we can say more. For, if $F \in A^{\infty}$, $F \not\equiv 0$, and $E = Z^{\infty}(F)$, then it follows from Taylor's formula with remainder that

$$|F(z)| \le (n!)^{-1} \rho(z, E)^n \max\{|F^{(n)}(z)| : z \in D\}, \qquad n = 0, 1, 2, \cdots.$$

Thus, because of (1), $|F(z)| \leq \rho(z, E)^n B^n M_n$, so that

$$-\log|F(e^{i\theta})| \ge \sup\{-n\log\rho(e^{i\theta}, E) - \log B^n M_n: n = 0, 1, 2, \cdots\}.$$

The integrability of $\log |F(e^{i\theta})|$ then implies that

(3)
$$\int_{-\pi}^{\pi} g^*(-\log \rho(e^{i\theta}, E)) d\theta < +\infty$$

where $g^*(x) = \sup\{nx - \log B^n M_n : n = 0, 1, 2, \dots\}$. This was already noted by Carleson [1, p. 330] (with similar proof) in case $M_n = (n!)^\alpha$. See also A. Chollet [2].

It is not to be expected that (3) is, in general, a sufficient condition for the existence of $F \in A^{\infty}$ satisfying (1) and with $Z^0(F) = Z^{\infty}(F) = E$. For example, in the case $E = \{1\}$, it is known [4, Theorem 1, equation 6] that the necessary and sufficient condition is

(4)
$$\int_{-\pi}^{\pi} h^*(-2 \log \rho(e^{i\theta}, E)) d\theta < +\infty$$

where $h^*(x) = \sup\{nx - \log n! \ B^n M_n : n = 0, 1, \dots\}$. In particular, if $M_n = n! (\log(n+1))^{kn}$ with $1 < k \le 2$, then the integral (4) diverges while the integral (3) converges.

Our construction of A^{∞} outer functions satisfying a growth condition of form (1) is based on the following theorem. As above, E is a proper

closed subset of ∂D and $\rho(z) = \rho(z, E)$ is the distance from z to E. Also, if $\{(e^{ia_n}, e^{ib_n})\}$ are the complementary arcs of E in ∂D , define

$$\tilde{\rho}(\theta) = \frac{1}{2\pi} \left(\frac{1}{\theta - a_n} + \frac{1}{b_n - \theta} \right)^{-1}, \quad \theta \in (a_n, b_n)$$
$$= 0, \quad e^{i\theta} \in E.$$

Note that $(4\pi)^{-1}\rho(e^{i\theta}) \leq \tilde{\rho}(\theta) \leq \frac{1}{4}\rho(e^{i\theta}) \leq \frac{1}{2}$.

THEOREM 1. Let λ^* be a nonnegative convex infinitely differentiable function such that $\varphi(e^{i\theta}) = \lambda^*(-2 \log \tilde{\rho}(\theta))$ satisfies

- (i) $(1/2\pi) \int_{-\pi}^{\pi} |\varphi(e^{i\theta})| d\theta \leq M < +\infty$ for some constant M;
- (ii) $|(d^n/d\theta^n)\varphi(e^{i\theta})| \leq n! K^{n+1}\rho(e^{i\theta})^{-n-1}, e^{i\theta} \in \partial D \sim E, n=0, 1, 2, \cdots,$ for some constant K > 0;
- (iii) for every constant C>0, $\varphi(e^{i\theta})+C\log \rho(e^{i\theta})\to +\infty$ as $\rho(e^{i\theta})\to 0$. Then there exists an outer function $F\in A^{\infty}$ with $Z^0(F)=Z^{\infty}(F)=E$ and a constant B>0 such that

(5)
$$|F^{(n)}(z)| \le n! B^n e^{\lambda(n)}, \quad n = 0, 1, \dots,$$

where $\lambda(n) = \sup\{nx - \lambda^*(x) : x > 0\}.$

PROOF. Let

$$G(z) = G(z, \varphi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \varphi(e^{i\theta}) d\theta, \qquad z \in D,$$

and let $F = \exp(-G)$. We first assert that the derivatives of G satisfy, for some $K_0 \ge 1$, $|G^{(n)}(z)| \le n! K_0^{n+1} \rho(z)^{-n-1}$, $n = 0, 1, 2, \cdots$. This may be proved by repeating the proof of Lemma 2.3 of [6] and keeping track of the constants which appear there. We omit the details of this computation. In particular, we have the slightly weaker estimate

$$|G^{(n+1)}(z)| \le n! (2K_0^2)^{n+1} \rho(z)^{-n-2}, \quad n=0, 1, 2, \cdots.$$

Next we claim that

(6)
$$|F^{(n)}(z)| \leq n! (4K_0^2)^{n+1} |F(z)| \rho(z)^{-2n}, \quad n = 0, 1, \cdots$$

The proof is by induction on n. Now (6) is clear for n=0. Assume (6) for $n=0, \dots, j$. For n=j+1,

$$|F^{(j+1)}(z)| = \left| \frac{d^{j}}{dz^{j}} F(z)G'(z) \right| \leq \sum_{n=0}^{j} {j \choose n} |F^{(j-n)}(z)G^{(n+1)}(z)|$$

$$\leq j! 2^{j+3} (K_0^2)^{j+2} |F(z)| \sum_{n=0}^{j} 2^{j-n} \rho(z)^{-2(j+1)+n}.$$

Since $\rho(z) \leq 2$, $2^{j-n} \rho(z)^{-2(j+1)+n} \leq 2^{j+1} \rho(z)^{-2(j+1)}$. Hence

$$\sum_{n=0}^{j} 2^{j-n} \rho(z)^{-2(j+1)+n} \le (j+1) 2^{j+1} \rho(z)^{-2(j+1)},$$

and (6) follows.

Because $|F^{(n)}(z)| \le D_n \rho(z)^{-2n}$ for some constant $D_n > 1$,

$$\log |F^{(n)}(re^{i\theta})| \le -2n \log \rho(re^{i\theta}) + \log D_n,$$

and so

$$\begin{aligned} \log^+ |F^{(n)}(re^{i\theta})| &\leq -2n \log \rho(re^{i\theta}) + \log D_n + 2n \log 2 \\ &\leq -2n \log \rho(e^{i\theta}) + \log D_n + 4n \log 2, \end{aligned}$$

where the last inequality follows from $\rho(e^{i\theta}) \leq 2\rho(re^{i\theta})$.

Since $\log \rho(e^{i\theta})$ is integrable, $F^{(n)}$ is of bounded characteristic on D (i.e. of class N). Moreover, the dominated convergence theorem implies that

$$\lim_{r \to 1^{-}} \int_{-\pi}^{\pi} \log^{+} |F^{(n)}(re^{i\theta})| d\theta = \int_{-\pi}^{\pi} \log^{+} |F^{(n)}(e^{i\theta})| d\theta.$$

Consequently, $F^{(n)}$ has the factorization $B_nS_nH_n$ where B_n is a Blaschke product, S_n is a singular inner function, and H_n is an outer function for the class N. See e.g. [3, p. 26]. Thus $F^{(n)}$ has the bound (5) iff the boundary values of $F^{(n)}$ have this bound. By (6),

$$|F^{(n)}(e^{i\theta})| \le n! (4K_0^2)^{n+1} |F(e^{i\theta})| \rho(e^{i\theta})^{-2n}$$
 a.e.

Hence, for some constant B>0,

$$|F^{(n)}(e^{i\theta})| \le n! B^n |F(e^{i\theta})| \tilde{\rho}(\theta)^{-2n}$$
 a.e.

or

(7)
$$|F^{(n)}(e^{i\theta})| \leq n! \ B^n \exp[-2n \log \tilde{\rho}(\theta) - \lambda^*(-2 \log \tilde{\rho}(\theta))] \quad \text{a.e.}$$

$$\leq n! \ B^n e^{\lambda(n)}.$$

This establishes (5) and also shows that $F \in A^{\infty}$. It is clear from the definition of F, (iii), and (7) that $Z^{0}(F) = Z^{\infty}(F) = E$.

THEOREM 2. Let E be a proper closed subset of ∂D . A necessary and sufficient condition that there exists $F \in A^{\infty}$ with $Z^0(F) = Z^{\infty}(F) = E$ and a constant B > 0 such that

(8)
$$|F^{(n)}(z)| \le n! B^n e^{n^p}, \quad n = 0, 1, \dots,$$

where $p > 1$, is that $\int_{-\pi}^{\pi} |\log \rho(e^{i\theta}, E)|^q d\theta < +\infty, (1/p) + (1/q) = 1.$

PROOF. Assuming the existence of such an F, (3) holds with $g^*(x) = \sup\{nx - n \log B - n^p : n = 0, 1, \dots\}$. A routine calculation shows $X^2 = O(g^*(x))$ for large x. Hence $|\log \rho(e^{i\theta})|^q$ is integrable.

For the converse we apply Theorem 1 with $\lambda^*(x) = (p/q)(x/p)^q$. For this λ^* , straightforward calculations verify that the hypotheses of Theorem 1 are satisfied and that $\lambda(n) = n^p$.

Theorem 1 also gives information in some cases when we do not know that (3) is a sufficient condition. For example, the following theorem, due to A. Chollet [2], may be obtained.

THEOREM 3. Let E be a proper closed subset of ∂D . If there exists $F \in A^{\infty}$, $F \not\equiv 0$, with $Z^{\infty}(F) \supset E$ and a constant B > 0 such that

(9)
$$|F^{(n)}(z)| \leq B^n(n!)^{\alpha}, \quad n = 0, 1, \dots,$$

where $\alpha > 1$, then

(10)
$$\int_{-\pi}^{\pi} \rho(e^{i\theta}, E)^{-1/(\alpha-1)} d\theta < +\infty.$$

In the converse direction, if $\alpha > 2$ and (10) holds, then there exists $F \in A^{\infty}$ with $Z^0(F) = Z^{\infty}(F) = E$ and a constant B > 0 such that $|F^{(n)}(z)| \leq B^n(n!)^{2\alpha-1}$, $n=0, 1, \cdots$.

PROOF. If $F \in A^{\infty}$ with $Z^{\infty}(F) \supset E$ satisfies (9), then (3) holds with $g^*(x) = \sup\{nx - \log B^n(n!)^{\alpha-1} : n=0, 1, \cdots\}$. Since $e^{x/(\alpha-1)} = O(g^*(x))$ for large x, (3) implies (10). In the converse direction apply Theorem 1 with $\lambda^*(x) = 2e^{-1}(\alpha-1)e^{x/2(\alpha-1)}$. Then $\varphi(e^{i\theta}) = 2e^{-1}(\alpha-1)\tilde{\rho}(\theta)^{-1/(\alpha-1)}$ and is easily seen to satisfy (i), (ii), and (iii) of Theorem 1. A simple calculation shows

$$e^{\lambda(n)} = O(e^{2(\alpha-1)n}(n!)^{2(\alpha-1)}).$$

REMARK. Theorem 3 gives another proof that the class of A^{∞} functions satisfying (9) for $1 < \alpha < 2$ is quasi-analytic.

REMARK. Mme. Chollet has sharpened the last part of Theorem 3 (unpublished) by showing that the exponent $2\alpha-1$ may be replaced by $2\alpha-2$.

REFERENCES

- 1. Lennart Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325-345. MR 14, 261.
- 2. A. Chollet, Ensembles de zéros de fonctions analytiques dans le disque, appartenent à une classe de Gevrey sur le bord, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A447-A449. MR 41 #5627.
- 3. P. L. Duren, *Theory of Hⁿ spaces*, Pure and Appl. Math., vol. 38, Academic Press, New York, 1970. MR 42 #3552.
- 4. B. I. Korenbljum, *Quasianalytic classes of functions in a circle*, Dokl. Akad. Nauk SSSR 164 (1965), 36-39=Soviet Math. Dokl. 6 (1965), 1155-1158. MR 35 #3074.
- 5. W. P. Novinger, Holomorphic functions with infinitely differentiable boundary values, Illinois J. Math. 15 (1971), 80-90. MR 42 #4754.

- 6. B. A. Taylor and D. L. Williams, Zeros of Lipschitz functions analytic in the unit disc, Michigan Math. J. 18 (1971), 129-139.
- 7. ———, Ideals in rings of analytic functions with smooth boundary values, Canad. J. Math. 22 (1970), 1266–1283. MR 42 #7905.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NEW YORK 13210