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BOUNDARY  ZERO  SETS  OF  A"  FUNCTIONS  SATISFYING
GROWTH CONDITIONS

B.   A.  TAYLOR  AND  D.   L.   WILLIAMS

Abstract.   Let A denote the algebra of functions analytic in the

open unit disc D and continuous in D, and let

Am = {feA:f^eA,n = 0, 1,2, •••}.

For/e A denote the set of zeros of f in D by Z°(f), and for fe

Ax letZœ(/)=fl™=o Z°(/"»). We study the boundary zero sets

of /I00 functions F satisfying, for some sequence {Mn} and some

5>0,

(1) \F'"'(z)\ ^ n\ B"M„,       zeD, « = 0,1,2, •■•.

In particular, when A/„=exp(«I>), p>\, it is shown that for E, a

proper closed subset of 3D, there exists Fe Ax satisfying (1) and

with Z°(F)=Z°°(F)=£ if and only if Jlf |log p(eie, E)\« dO< + œ.
Here P(z, E) is the distance from z to Fand (l//>) + (l/<7) = l.

Let A denote the algebra of functions analytic in the open unit disc D

and continuous in D, and let Ax = {fe A:f{n) e A,n=0, 1,2, • • •}. For

feA denote the set of zeros of/in D by Z0(/), and for/e A*1 letZco(/) =

f|"=oZ°(/<n)). We study the boundary zero sets of A* functions F

satisfying, for some sequence {Mn} and some B>0,

(1) |F(n,(z)| á «! BnMn,       z e D, n = 0, 1, 2, • • ■ .

In particular, when Mn=e\pinv), p>\, it is shown that for E, a proper

closed subset of dD, there exists Fe Ax satisfying (1) and with Z°iF)=

Z™iF) = E if and only if jl, |log Pieie, E)\« dd< + oo. Here P(z, E) is the

distance from z to E and (l//>) + (l/<7)=l.

Before outlining the construction which yields the result stated above,

let us recall some known facts and make a few simple observations. If

fe A,f^0, and satisfies a Lipschitz condition of order a, |/(z)—/(z')|^
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C\z-z'\", then log |/(z)|<a log p(z, Z°(/))-f-log C; and, consequently,

JI, log p(e*B,Z°(f))d6> — co by Riesz's theorem. Conversely, Carleson

[1] showed that if E<=-dD is closed and

(2) i" log p(eie, E) dd > -co,

then for any m>0 there exists an outer function

FeAm = {fEA:ff',---,fim)eA}

such that Z\F)=Za{F') = ---=ZO(F{m))=E. This result has been

extended to show that there exists an F in A™ with Z°(F)=ZX(F)=E (see

[5], [6], or [7]). The extension is also a consequence of a recent theorem

of Carleson and S. Jacob, which implies that an outer function Fe A with

| F| £ Cœ (dZ)) belongs to/400.

In case F satisfies the stronger hypothesis (1) we can say more. For, if

Fe A™, F^O, and £=ZC0(F), then it follows from Taylor's formula with

remainder that

|F(z)| <: (n\rlp(z, £)" max{|FU)(z)|:z e D},       n = 0, 1, 2, • • •.

Thus, because of (1), \F(z)\^p(z, E)nBnMn, so that

-log \F(e">)\ ̂  sup{-« log p(eie, E) - log BnMn:n = 0, 1,2, • • •}.

The integrability of log \F(e,e)\ then implies that

(3) |Tg*(-log/)(eie,£))dÖ<+co

where g*(x)=sup{«x—log B"M„:n=0, 1, 2, • • •}. This was already

noted by Carleson [1, p. 330] (with similar proof) in case Mn=(nl)a.

See also A. Chollet [2].

It is not to be expected that (3) is, in general, a sufficient condition for

the existence of F e Am satisfying (1) and with Z0(F)=Z°°(£) = £. For

example, in the case £={1}, it is known [4, Theorem 1, equation 6] that

the necessary and sufficient condition is

(4) f " h*{-2 log P(eie, £)) dO < + co

where /i*(x)=sup{«x—log n\ B"Mn:n=0, 1, • • •}. In particular, if Mn=

n\ (log(«-r-l))fcT! with l<rc^2, then the integral (4) diverges while the

integral (3) converges.

Our construction of Am outer functions satisfying a growth condition

of form (1) is based on the following theorem. As above, £ is a proper
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closed subset of dD and piz)=piz, E) is the distance from z to E. Also,

if {(/"", e1"")} are the complementary arcs of E in dD, define

2tt\6 - an      bn-6l

= 0,       e" e F.

Note that (47r)-V(eifl)^/5(0)^ W'8)^i

Theorem 1.    Let X* be a nonnegative convex infinitely different ¡able

function such that cpie'e) = X*i — 2 logp(ö)) satisfies

(i) (1/2tt) fl, |^(ei9)| dd<:M< + 00/or ¿om<? constant M;

(ii) |(dn/JflB)ç>(eM)|gn!KB+V(eiV,-\ eie edD~E, n=0, 1, 2, ■•■,

/or iowe constant A">0;

(iii) /or erery constant C>0, c)(e'ö)+C log p(eie)-»- + °° as p(/9)^0.

Then there exists an outer function FeAm with Z°iF)=ZxiF)=E and

a constant ß>0 such that

(5) |F(n)(z)|^ n\Bnelln\       n = 0, 1, • • •,

where Xin) = sup{nx — X*ix):x>0}.

Proof.   Let

Giz) = G(z, Ç)) = -J- P 4^^ ?(«") ¿*,       s g D,
277 J-, e   — z

and let F=exp( — G). We first assert that the derivatives of G satisfy, for

some K0^l, |G(n)(z)|^«! K^1 pizy-'-1, n=0, 1, 2, • • • . This may be

proved by repeating the proof of Lemma 2.3 of [6] and keeping track of

the constants which appear there. We omit the details of this computation.

In particular, we have the slightly weaker estimate

|G«"+«(z)| ̂  n! (2^)"+V(z)-n-2,       «=0, 1, 2, • ■ • .

Next we claim that

(6) |Fu,(z)| ^n!(4K^r+1|F(z)|p(zr2",        n = 0, 1, • ■ •.

The proof is by induction on n. Now (6) is clear for n = 0. Assume (6) for

n=0, •••,/. For n=j+\,

rO+i) (z)l — F(z)G (z)
iJZ;

(z)G'" u(z)|

ÍJ\2^\Kl)i+2\F(z)\ J 2J->(z)^(-1):".
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Since p(z)^2, 2i->(z)-2(^1)+"^2'+V(z)-2<i+1). Hence

J

22j-v(zr2,,+i)+n ^ (j + i)2í+ip(z)-2(i+i),
n=0

and (6) follows.

Because |F(n)'(z)|ií Dnp{z)~2n for some constant Dn>l,

log |F("V)I ^ -2n log P(rei9) + log D„,
and so

log+ |FU V")l ^ -2/1 log />(re") + log Dn + 2n log 2

^ -2b log p(e*8) + log Dn + An log 2,

where the last inequality follows from />(e,fl)<2/>(re,fl).

Since log p(e'e) is integrable, F(n) is of bounded characteristic on D

(i.e. of class N). Moreover, the dominated convergence theorem implies

that

lim  | *log+ |F(nW)l dd = i"log+ |F("V)I de.
r-»l        J—TT J—TT

Consequently, F{n) has the factorization BnSnHn where Bn is a Blaschke

product, Sn is a singular inner function, and Hn is an outer function for

the class N. See e.g. [3, p. 26]. Thus FM has the bound (5) iff the boundary
values of F(n) have this bound. By (6),

| FM(eie) | g n ! (4X02)n+1 | F(V9) | p^*)-8"   a.e.

Hence, for some constant B>0,

\Fln)(eie)\ á n\ Bn \F(eie)\ p{ey2n   a.e.

or

|F(nV*)| ^n\B" exp[-2n log p(B) - X*(-2 log p(6))]   a.e.

(7) <«!ßV(7i>.

This establishes (5) and also shows that F e A™. It is clear from the defini-

tion of F, (iii), and (7) that Z°(F)=ZC°(F)=E.

Theorem 2. Let E be a proper closed subset of dD. A necessary and

sufficient condition that there exists FE Am with Z°(F)=Zco(F) = E and a

constant Z?>0 such that

(8) |F("»(z)| gn!BV*,       n = 0, 1, • • •,

wherep>\, is that JI, |log P(eie, E)\" dQ< + co, (\¡p) + (\¡q)=\.

Proof. Assuming the existence of such an F, (3) holds with g*(x)=

$up{nx — n\ogB-n1':n = 0,\,---}. A routine calculation shows X2 =

0(g*(x)) for large x. Hence |log pie1")]9 is integrable.
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For the converse we apply Theorem 1 with X*ix) = iplq)ix¡p)9. For this

A*, straightforward calculations verify that the hypotheses of Theorem 1

are satisfied and that A(«)=np.

Theorem 1 also gives information in some cases when we do not know

that (3) is a sufficient condition. For example, the following theorem, due

to A. Chollet [2], may be obtained.

Theorem 3. Let E be a proper closed subset of dD. If there exists

FeA™, F=zéO, with Z^iF)^ E and a constant B>0 such that

(9) \FM(z)\ ^ Bn(n\f,       n = 0, 1, •••,

where a > 1, then

(10) \   P(e'e, Er1/U~1]dd< +00.

In the converse direction, ;/a>2 and (10) holds, then there exists Fe A™

with Z°iF)=ZcoiF) = Eand a constant B>0 such that \FM(z)\ <;ßn(rt Î)2*-1,

«=0, l,--.

Proof. If Fe A™ with ZxiF)^E satisfies (9), then (3) holds with

^*(A-)=sup{«A--logß"(n!r-1:«=0, 1, • • •}. Since e?'{^ = 0{g*{x)) for

large x, (3) implies (10). In the converse direction apply Theorem 1 with

A*(^) = 2e^(a-l>a:/2(0,-1,. Then cP(eia)=2e-1(aL-l)ß(ß)-in'~1) and is

easily seen to satisfy (i), (ii), and (iii) of Theorem 1. A simple calculation

shows

Remark. Theorem 3 gives another proof that the class of A °° functions

satisfying (9) for 1 <a<2 is quasi-analytic.

Remark. Mme. Chollet has sharpened the last part of Theorem 3

(unpublished) by showing that the exponent 2a—1 may be replaced by

2a-2.
References

1. Lennart Carleson, Sets of uniqueness for functions regular in the unit circle, Acta

Math. 87 (1952), 325-345. MR 14, 261.
2. A. Chollet, Ensembles de zéros de fonctions analytiques dans le disque, appartenent

à une classe de Gevrey sur le bord, C. R. Acad. Sei. Paris Sér. A-B 269 (1969), A447-

A449. MR 41 #5627'.
3. P. L. Duren, Theory of H1' spaces, Pure and Appl. Math., vol. 38, Academic

Press, New York, 1970. MR 42 #3552.
4. B. I. Korenbljum, Quasianalytic classes of functions in a circle, Dokl. Akad.

Nauk SSSR 164 (1965), 36-39=Soviet Math. Dokk 6 (1965), 1155-1158. MR 35 #3074.
5. W. P. Novinger, Holomorphic functions with infinitely differentiablc boundary

values, Illinois J. Math. 15 (1971), 80-90. MR 42 #4754.



160 B.   A.   TAYLOR   AND   D.   L.   WILLIAMS

6. B. A. Taylor and D. L. Williams, Zeros of Lipschitz junctions analytic in the unit

disc, Michigan Math. J. 18 (1971), 129-139.
7. -, Ideals in rings of analytic functions with smooth boundary values, Canad.

J. Math. 22 (1970), 1266-1283. MR 42 #7905.

Department of Mathematics, University of Michigan, Ann Arbor, Michigan

48104

Department of Mathematics, Syracuse University, Syracuse, New York 13210


