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A  CHARACTERIZATION  OF  EXCHANGE  RINGS

G.  S.  MONK1

Abstract. A necessary and sufficient condition on the endo-

morphism ring of a module for the module to have the finite

exchange property is given. This condition is shown to be strictly

weaker than a sufficient condition given by Warfield. The class of

rings having these properties is equationally definable and is a

natural generalization of the class of regular rings. Finally, it is

observed that in the commutative case the category of such rings is

equivalent with the category of ringed spaces (X, ¿#) with X a

Boolean space and M a sheaf of commutative (not necessarily

Noetherian) local rings.

In all that follows we will consider modules and morphisms as being

over a ring S. Given two direct decompositions K—M@X—@ 2 {A{\i e 7}

of a module, we say that they can be exchanged at M if there are sub-

modules A'i^Ai (iel) such that K=M&(® 2 {A't\ie /}). A module M

is said to have the «-exchange property if any pair of decompositions

K=M'®X=@ 2{At\ie 1} with M'^M and card(7)^n can be exchanged

at M'. The module M has the (finite) exchange property if it has the

«-exchange property for all (finite) cardinals n. In a fundamental paper

[1], Crawley and Jónsson define the exchange properties and use them

to prove theorems on isomorphic refinements of direct decompositions

of modules. Warfield has shown [3] that an indecomposable module

has the exchange property if and only if its endomorphism ring

is local. In an attempt to generalize this theorem he has shown

recently [4] that if R is Ends(A7) and J is its Jacobson radical, then M

has the finite exchange property if every principal left ideal of R¡J is

of the form Re+J where e is an idempotent element in R. In the present

paper we will give another condition on R which is, in fact, necessary and

sufficient for M to have the finite exchange property and furthermore is

strictly weaker than Warfield's.

We will frequently use the fact that a direct decomposition K=A®B

of a module is naturally related to an idempotent endomorphism ir of K

which leaves the elements of A fixed and has B as its kernel. This will be
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referred to as the projection on A along B and denote l by K=A®B;

v.K^-A. We will routinely abuse notation by beginning v ,th a morphism

f:Ay-^A2 and submodules B^Aj (;'=1,2) such that f(By)^B2 and

writing/: Ä, *B2 instead of (f\By):By-±B2.

Our point of view is that if K=M®X=A®B and it is the projection on

A along B, then exchange at M can be characterized in terms of the

action of 7T on M, which is, in turn, di-xribable as a first order sentence

about R=Ends(M).

Definition. Given a module K with submodub M, The morphism a

of M into A' is divided on M if M=MX®M2 anc K=Ky®K2 such that

(i) x-.Myo^Ky, (ii) <x(M2)cA:2, (iii) l-x:M2>-*Ks'lits.

It is not difficult to show that the ene omorphisi i ring R of a module

Misregular if and only if given a 6 R, M— Uy®ktr(a) such that a : My *-+M

splits. This condition clearly implies that ct:M^-M is divided on M.

Lemma 1. Given a module K with submodule M, the morphism a.:M—>-K

is divided on M if and only if there are morphisms y end a in Hom^Ä", M)

such that ya.y = y on K, and tj(\M — a)(\M — va)=lM — ya on M.

Proof. Given a, y and a with these properties, oserve that ay and

y a. are idempotent endomorphisms of K and M respectively and that

(lM—a):(l M—ya.)(M)>-~+K splits. But then a divides on M because we

have the decompositions

M=My®M2;   yx(M) = My,       K = K1@Ki;   xy(K) = Kv

Conversely, if M—My®M2 and K=Ky®K2 such that x.My^Ky,

a(M2)^K2 and ( 1A1 — a) : M2 >-»■ K splits, then, defining y on Ky as (a.\My)-1

and on K2 as 0, we have that ay is the projection on Ky along K2, while

ya is the projection on My along M2. But then the equations follow easily.

Lemma 2. The decompositions K=M®X, K=A<îB, n(K)=A can be

exchanged at M if and only ifv is divided on M.

Proof.    If K=M@Ay®By with Ay<^ A and ByÇ B, then, letting

My = M O (A + By), M2 = M n (^ + 5),

a2 = .4 n (Af + ly,      A-2 = a + 5,

it can be shown easily that M=MX®M2, K=A2®K2, -rr:My^A2, and

7r(M2)çA'2. Since (1 u—77) ismonic on Af2and(l — Tr)(M2)=BC\(M+Ay),

which is a complement of A-\-By in K, we conclude that -n is divided on M.

For the converse suppose that there are endomorphisms y and a such

that ytry = y on K and

(1) o-(l -,, - ir){\M - y-n) = 1M - yw    on Af.



1972] A  CHARACTERIZATION  OF  EXCHANGE RINGS 351

Then, noting that if pis the projection on M along A, y=py, (1^—yr)p=

P^M-Y'")P=(lK-yn)p and (1M-^)/>=(ljc-7r)/°! multiplying (1)

on the right by p and on the left by (\K—yn), we obtain

(2) Ox - v")°Vk - ■"•)Ga- - yn)p = (\K - y^)p  on K.

Now if we let 0X be the idempotent y-n and d2=(lK—61)a(lK—Tr)(lK—d1),

we infer from (2) that 02 is an idempotent such that

6lP + 62p = p,       0& = B26x = 0
and

Mi* - ox) - (i* - 0,)o-(iÄ - 7T)(7r - e,)(i/c - e,) = o.

Thus, if we let di(K)=Mi, ker 0¿=L¿ (/=1, 2), we obtain M=M1+Mi:

K = M, 0 L\,       B, M2 g L,,

7C = M2 e F2,       A/l (/I n Ij) g F2,

so that

Lx= (A® B) r\Lx= (A C\ L,) © 7i,

Lir\L2= (A n L,) © (£ n 7_2),

F2 = (Mi © Lj) O L2 = Afj. © (L, n 7_2)

= A/, © (/l n lx) © (5 n l2)

and

K = A/¡¡ © My ® (A n 7.,) © (5 n L2)

= M © (/I ni,)@(in L2),

which is the desired result.

Theorem 1. The module M has the finite exchange property if and only

if the ring R=Ends(M) has the property
(E) Given a.eR, there exist y and a in R such that y<x.y=y and

cr(l —a)(l — ya)= 1 — ya.

Proof. We first recall that, according to Crawley and Jónsson [1,

Lemma 3.11], the finite exchange property for a module M is equivalent

to the 2-exchange property. If the condition (E) holds for 7? and

(3) K=M®X=A®B,       p(K) = M,       tt(K) = A,

then p-np, viewed as an endomorphism of M, is divided on M. It is then

easily seen that 7r as a morphism of M into K is divided on M, whence the

decompositions (3) can be exchanged at M and M has the finite exchange

property.
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To prove the converse we fix a 6 R and define K=MxM,

Sy £2

M^Z± K^Z^M
Tl T2

a(m) = (a(m), (1— a.)(m)) and A(m) = (m, —m). Then 'et Mc, MA, A and B

be the images of M in A under a, A, Sy and e2 respectively. It is clear that

a is an isomorphism of M onto Ma and that A = Ma®MA=A®B with

gjT! the projection on A along 5. Since M has the 2 exchange property,

these decompositions can be exchanged at Ma and ¿Vi is divided on M„

with Ma=M{})®M{„) and A=,42©A"2 the related decompositions.

Inasmuch as A2çlA, we infer from the second decomposition that A =

A2®(AC\K2). Now the isomorphisms a:M^Ma and ey:M^.A give

decompositions M=Mx®M2=M3®Mi where a(Mi)=MiJ) (/a 1,2),

£1(M3)=/i2 and fi,(A/4)=.4nA2. It is then easy to show that t^t^ct:

My^M3, Ty(EyTy)o(M2)^ M4 and that t2(1 — EyTy)a:M2->^>-M splits. But

since a = T1(£1T1)cr and (1 — oc) = t2(1 — EyTy)a, we conclude that a is divided

on M which gives the desired result.

Warfield defines a ring R to be an exchange ring iï RR has the exchange

property (as an /?-module), but then goes on to show that such rjngs are

exactly the rings of endomorphisms of modules with the finite exchange

property [4, Theorem 2]. Thus we have characterized exchange rings in

Theorem 1. As was mentioned in the introduction, Warfield also proves

[4, Theorem 3] that if R is a ring such that every principal left ideal of

RjJ is of the form Re+J where e=e2 and / is the Jacobson radical of R,

then R is an exchange ring. Our next theorem shows that this does not

characterize exchange rings.

Theorem 2. There is a commutative exchange ring which is Jacobson

semisimple but not regular.

Proof. Let Zv be the p-adic integers, F any field having Zp as a sub-

ring and A the ring product of N0 copies of F. Viewing A as sequences of

elements from F, let R be the subring of A generated by the finitely non-

zero sequences of A (called A0) and multiples from Zv of (1, 1, 1, • • •).

It is clear that if, for a e A, we denote by 7rt(a) the /th coordinate of a,

then 7Tl:Ä->F so that ker77¿ is a maximal ideal in S. Inasmuch as

H {ker7r,|/=l, 2, 3, • • } = (0), R is a Jacobson semisimple ring. But R

cannot be regular because the factor rings of such a ring would be regular

and Z(), which is isomorphic to R¡(A0), is not regular. To see that R is an

exchange ring, begin with a typical element a=(ay, a2, • • • , am, r,r, • • •)

in R where a¡ eF,\ ^i<m, and r eZv. For each /=1, 2, • • •, m such that

a^O, let c,=a,1 and d¡=0. For /=1, 2, • • • , m such that a¿=0 let

ci=di = 0. Then for \^iSm, ciaici=ci and «/<(!— û<)(1— (¡¿cA^l— a(c{.
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If r$p Z„, let s=r_1 in Z„ and t=0. If r e pZp, let i=0 and t=

(1 — r)_1. In either case srs=s and t(\ —r)(l — rs)= 1 —rs, and if we let c=

(ci> ' ' " . cm, s, s, ■ ■ ■) and d=(dt, ■ • ■ , dm, t, t,- ■ ■) the desired equations

hold for a, c and d.

Constructions of the sort used in the preceding proof can be viewed as a

special case of the formation of the ring of sections of a sheaf of rings

over a Boolean space. In view of the fact that Pierce [2] uses this technique

to such advantage in his study of commutative regular rings, it seems

natural to study commutative exchange rings in connection with ringed

spaces, although this is far removed from the original source of exchange

rings. However, recalling Warfield's characterization of an exchange

ring with no nontrivial idempotents as a local ring (in the sense of having

a unique maximal ideal) [2, Proposition 1], we have the following pleasant

result.

Theorem 3. There is an equivalence between the category of commutative

exchange rings and the category of ringed spaces (X, 38) with X a Boolean

space and 38. a sheaf of commutative local rings.

Proof. First observe that if (X, 38) is a ringed space with X a Boolean

space and 38 a sheaf of commutative local rings, then each of the stalks

satisfies the property (E), so that, by Pierce's Theorem 3.4 [2], the ring

of sections of (X, 3$) does likewise. On the other hand, the stalks of the

ringed space of a commutative exchange ring are commutative exchange

rings (since the property (E) is preserved by epimorphisms) with no

nontrivial idempotents and hence are local. Pierce's Theorem 10.1 then

gives the equivalence of these categories.
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