COMMUTANTS THAT DO NOT DILATE

DOUGLAS N. CLARK¹

ABSTRACT. The Lifting Theorem deals with dilation of the commutant of an operator T_1 on Hilbert space. In this note, counterexamples are given to generalizations of the theorem involving N commuting operators T_1, T_2, \dots, T_N .

In general terms, the Lifting Theorem for restricted shifts states that if T is an operator commuting with the projection of the shift S_1 (on H^2) to one of its star-invariant subspaces, then T may be dilated, without changing its norm, to an operator commuting with S_1 . The theorem was first proved by Sarason [3], and has been extended by Sz.-Nagy and Foias, to vector-valued H^2 spaces [4], and other, more general, situations [5].

To state the theorem more precisely, let us introduce some notation which at once suggests a different sort of generalization. Let U^N denote the polydisk in N complex variables z_1, \dots, z_N . Let \mathscr{H} be a separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$, and let $H^2_{\mathscr{H}}(U^N)$ denote the H^2 space of U^N based on \mathscr{H} . Thus an element of $H^2_{\mathscr{H}}(U^N)$ has the form

$$f(z_1, \dots, z_N) = \sum_{i=1}^{N} a_{i} z_1^{i_1} z_2^{i_2} \dots z_N^{i_N}$$

where the sum is over $J=(j_1,\cdots,j_N)\in \mathbb{Z}_+^N$, where $a_J\in \mathscr{H}$, and where $\sum \|a_J\|^2 < \infty$. Let S_1,\cdots,S_N denote the shifts $(S_jf=z_jf)$ on $H^2_{\mathscr{H}}(U^N)$, let M denote a subspace of $H^2_{\mathscr{H}}(U^N)$, invariant under S_1,\cdots,S_N , and define

$$T_i f = P_{M^{\perp}} z_i f, \qquad f \in M^{\perp} = H_{\mathscr{H}}^2(U^N) \ominus M.$$

The above Lifting Theorem now states that, if N=1 and if T commutes with T_1 , then there is a dilation S of T which commutes with S_1 and which satisfies ||S|| = ||T||.

The purpose of this note is to give examples of invariant subspaces M in $H^2_{\mathcal{H}}(U^2)$ and $H^2(U^3)$ (= $H^2_C(U^3)$, C the complex numbers) and of bounded operators T on M^{\perp} , commuting with the T_j , but having no (bounded) dilation commuting with the S_j . Such a T always has an

Presented to the Society, February 15, 1971; received by the editors March 1, 1971 and, in revised form, February 5, 1972.

AMS 1970 subject classifications. Primary 47A20; Secondary 47A45, 32A99, 30A80.

¹ Partially supported by NSF grant GP-11475.

[©] American Mathematical Society 1972

unbounded dilation commuting with the S_j , as I proved in [1]. For an example involving a different dilation problem for commuting operators, see Parrott [2].

Our first example has to do with norms of dilations in $H^2(U^2)$ and generalizes an example I gave in [1].

EXAMPLE 1. Let M_n denote the invariant subspace of $H^2(U^2)$ generated by the homogeneous polynomials of degree n. If $p(z_1, z_2)$ is a homogeneous polynomial of degree n and T_p is the operator of multiplication by p and projection on M_{n+1}^{\perp} , then $\|T_p\| = \|p\|_2$, but the minimal norm of a dilation of T_p which commutes with S_1 and S_2 is $\|p\|_{\infty}$.

The first statement comes from the fact that T_p has rank 1. In fact, $T_p 1 = p$ and $T_p x = 0$ for $x \in M_{n+1}^{\perp} \ominus \{1\}$.

To prove the second statement,² note that an operator T on $H^2(U^2)$ which commutes with S_1 and S_2 and which is a dilation of T_p must consist of multiplication by a function of the form p+f, where $f \in M_{n+1}$. Pick $\alpha = (\alpha_1, \alpha_2)$ with $|\alpha_1| = |\alpha_2|$ and $|p(\alpha)| = ||p||_{\infty}$. If $h(\lambda) = p(\alpha) + f(\lambda \alpha_1, \lambda \alpha_2)/\lambda^n$, then h is holomorphic in $|\lambda| < 1$ and $|h(0)| = ||p||_{\infty}$. We have

$$||T|| = ||p + f||_{\infty} \ge ||p(\lambda \alpha) + f(\lambda \alpha)||_{\infty}$$

where the last norm is the one variable L^{∞} norm. Further,

$$||p(\lambda\alpha) + f(\lambda\alpha)||_{\infty} = ||\lambda^n p(\alpha) + f(\lambda\alpha)||_{\infty} = ||\lambda^n h(\lambda)||_{\infty}$$
$$= ||h(\lambda)||_{\infty} \ge |h(0)| = ||p||_{\infty}.$$

This completes Example 1.

Example 2. There is an invariant subspace M of $H^2_{\mathscr{H}}(U^2)$ and an operator T on M^{\perp} commuting with T_1 and T_2 which has no bounded dilation S which commutes with S_1 and S_2 .

Let x_1, x_2, \cdots be an orthonormal basis of \mathcal{H} , and let M consist of functions of the form $\sum a_{nm}z_1^nz_2^m$ where a_{nm} lies in the span of x_1, x_2, \cdots , x_{n+m-1} . Let Q_n denote the projection of \mathcal{H} on the span of x_n , and let p_1, p_2, \cdots be homogeneous polynomials of degrees 1, 2, \cdots , which satisfy

$$\sum \|p_n\|_2^2 < \infty$$

and

$$\|p_n\|_{\infty}\to\infty.$$

For $x \in M^{\perp}$,

$$x = \sum_{j,k=0}^{\infty} a_{jk} z_1^j z_2^k,$$

² This proof incorporates simplifications pointed out to me by H. Alexander.

where a_{jk} is a linear combination of x_{j+k} , x_{j+k+1} , \cdots . Let T'_n denote the operator on M^{\perp} of multiplication by p_nQ_n and projection on M^{\perp} . Thus

$$T'_n x = P_M \perp p_n \sum_{j+k \leq n} z_1^j z_2^k (Q_n a_{jk}),$$

and since $Q_n a_{jk} = \langle a_{jk}, x_n \rangle x_n$, we have $p_n z_1^j z_2^k Q_n a_{jk} \in M$ if j+k>0. It follows that

$$T'_{n}x = p_{n}Q_{n}a_{00} = \langle a_{00}, x_{n}\rangle p_{n}x_{n}.$$

Clearly $T'_n x \perp T'_m x$ if $n \neq m$ and so, by (1) and (3), $T = \sum_{n=0}^{\infty} T'_n$ exists in the strong operator topology and T commutes with T_1 and T_2 .

Now any (bounded) dilation S of T which commutes with S_1 and S_2 must have the form $Sf = p(z_1, z_2)f$ where p is an analytic function in U^2 whose values are operators on $\mathscr H$ and $||p(z_1, z_2)|| \le K$, say. In addition, S maps M into M and, if $f \in M^{\perp}$, $p(z_1, z_2)f = Tf + x$, where $x \in M$. If $x \in M$, if $\langle \cdot, \cdot \rangle$ denotes the inner product in $\mathscr H$, and if $(z_1, z_2) \in U^2$, we have

$$\langle x(z_1, z_2), x_n \rangle = \sum_{j+k=n+1}^{\infty} \langle a_{jk}, x_n \rangle z_1^j z_2^k.$$

It follows that

$$K \ge |\langle Sx_n, x_n \rangle| = |\langle Tx_n, x_n \rangle + \langle x, x_n \rangle|$$
$$= \left| p_n(z_1, z_2) + \sum_{j+k=n+1}^{\infty} \langle a_{jk}, x_n \rangle z_1^j z_2^k \right|$$

for $(z_1, z_2) \in U$ and for all n. This contradicts Example 1 and (2).

Example 3. There is an invariant subspace M of $H^2(U^3) = H^2_C(U^3)$ and an operator T on M^{\perp} commuting with T_1 , T_2 and T_3 which has no bounded dilation S which commutes with S_1 , S_2 and S_3 .

Let B(z) be a Blaschke product in one variable

$$B(z) = \prod_{n=1}^{\infty} \frac{-\bar{a}_n}{|a_n|} \frac{z - a_n}{1 - \bar{a}_n z},$$

whose zeros are distinct but otherwise unspecified for the moment. Let

$$B_m(z) = \prod_{n=m}^{\infty} \frac{-\bar{a}_n}{|a_n|} \frac{z - a_n}{1 - \bar{a}_n z},$$

and let M_n be the invariant subspace of $H^2(U^3)$ generated by the homogeneous polynomials in z_1 and z_2 of degree n. Let M denote the closure of the span of

$$B_1(z_2)M_1 \cup B_2(z_3)M_2 \cup \cdots$$

Thus M is the invariant subspace of $H^2(U^3)$ generated by all functions of the form $B_j(z_3)p(z_1, z_2)$ where p is a homogeneous polynomial of degree j.

Again we choose homogeneous polynomials p_0 , p_1 , \cdots in z_1 , z_2 of degrees 0, 1, \cdots and satisfying (1) and (2). This time, T'_n is the operator on M^{\perp} of multiplication by $p_{n-1}B_n$ and projection on M^{\perp} .

Clearly $T'_n f = 0$ (i.e. $p_{n-1}B_n f \in M$) if either $f \in M_1$ or $f(a_{n-1}) = 0$. Thus T'_n has rank 1 and is zero on the orthogonal complement of the span of the function

$$F(z_1, z_2, z_3) = (1 - \bar{a}_{n-1}z_2)^{-1}$$

Furthermore,

(4)
$$T'_{n}F = p_{n-1}B_{n}(1 - \bar{a}_{n-1}z_{3})^{-1}$$

and

$$||p_{n-1}B_n(1-\bar{a}_{n-1}z_3)^{-1}|| = ||p_{n-1}|| ||(1-\bar{a}_{n-1}z_3)^{-1}||,$$

so that $||T'_n|| \le ||p_{n-1}||$. In addition, (4) implies that the ranges of the T'_n are orthogonal, so we may conclude that $T = \sum_n T'_n$ exists in the strong operator topology and commutes with T_1 , T_2 and T_3 . We claim there is no function $f \in M$ such that

(5)
$$\left\| \sum_{n=1}^{\infty} p_{n-1}(z_1, z_2) B_n(z_3) + f \right\|_{\infty} = K < \infty.$$

In fact, if $f \in M$, $f(z_1, z_2, a_n)$ has homogeneous degree at least n+1, so that, setting $z_3 = a_n$ in (5) gives

$$||p_n B_{n+1}(a_n) + f(z_1, z_2, a_n)||_{\infty} \le K,$$

and $f(z_1, z_2, a_n) \in M_{n+1}$. If we now assume that B is chosen so that $B_{n+1}(a_n)$ is bounded from 0 (i.e. if the sequence $\{a_n\}$ is interpolating) we have obtained a contradiction.

REFERENCES

- 1. D. N. Clark, On commuting contractions, J. Math. Anal. Appl. 32 (1970), 590-596. MR 42 #2309.
- 2. S. Parrott, Unitary dilations for commuting contractions, Pacific J. Math. 34 (1970), 481-490. MR 42 #3607.
- 3. D. E. Sarason, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc. 127 (1967), 179-203. MR 34 #8193.
- 4. B. Sz.-Nagy and C. Foiaş, Commutants de certains opérateurs, Acta. Sci. Math. (Szeged) 29 (1968), 1-17. MR 39 #3346.
- 5. ——, Dilatation des commutants d'opérateurs, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A493-A495. MR 38 #5049.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024