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CLOSED IDEALS IN C(X)

PHILIP  NANZETTA  AND  DONALD   PLANK

Abstract. The characterization of uniformly closed ideals in

C(X), for X compact Hausdorff, is well known. In this note, we

extend this characterization to an arbitrary completely regular

FJausdorff X and derive some corollaries.

1. Preliminaries. We shall assume that the reader is familiar with the

terminology and basic results of the Gillman and Jerison text [GJ].

Thus, C(X) will denote the algebra of all continuous real-valued functions

defined on the space X. The class of algebras C(X) is unaltered if we

restrict attention to completely regular Hausdorff spaces X, and therefore

X will always denote a completely regular Hausdorff space in the sequel.

Each continuous/: X-+R admits a unique continuous extension/* : ßX-*-

yR where ßX denotes the Stone-Cech compactification of X and yR

denotes the extended reals (the two-point compactification of the reals R).

For /9C(I), we write /*={/* :/g/}. We shall expand the zero-set

notation Z(f) and Z[I] to include extended real-valued functions.

We may define a metric p on C(X) by the formula

p(f, g) = sup{\f(x)-g(x)\ A \-.xcX}.

This metric is complete, and C(X) becomes a topological vector space,

but in general not a topological ring, in the metric topology. This topology

is called the uniform topology (or u-topology), and the reader is referred to

[H] for further details. If /£ C(X), then /will denote the uniform closure

of/. In the remainder of this note, all topological properties of C(X) will

refer to the uniform topology.

By "ideal", we shall mean "proper ring ideal".

2. Closures of ideals. If / is an ideal in C(X), then its closure / is

easily seen to be a proper closed vector sublattice of C(X). However, /

need not be an ideal; there may exist/g / and g e C(X) such that fg $ f.
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In fact, the next result guarantees the existence of such an / for any non-

pseudocompact space X.

2.1 Theorem.    The following conditions are mutually equivalent.

(a) X is pseudocompact.

(b) The closure of any ideal in C(X) is an ideal.

(c) Each ideal in C(X) is contained in a closed ideal.

Proof, (a) implies (b). If X is pseudocompact, then C{X)=C(ßX)

is a topological algebra under the uniform (norm) topology.

(b) implies (c). Clear.

(c) implies (a). Suppose that X is not pseudocompact; thus, there

exists an unbounded/e C(X) which we may assume to be strictly positive.

Define

Fn = {xeX:f(x)^n},       » = 1,2,3, •••,

I ={ge C{X):Fn ç Z(g) for some »}.

Then / is an ideal in C(X). Suppose that / were contained in the closed

ideal J; we shall show that \/feJ in contradiction to the definition of J.

Let £>0 (e real) be given, and choose a positive integer « such that l/«<e.

Defineg=(l//- 1/«)V0. Then Fn^Z(g), so that ge/ç/, while 0<(l//)-g

= 1 /«A 1 ¡f£ 1 In < e. Hence 1/feJ.    D
2.2 Example. A particular ideal can be contained in a closed ideal

without its closure being an ideal. Let X be nonpseudocompact, and let /

be the ideal constructed in 2.1. Let Y be the disjoint union of X and the

one-point space {/?}, and define

J={feC(Y):f\XeI,f(p) = 0},

K={feC(Y):f\Xci,f(p) = 0},

M={feC(Y):f(p) = 0}.

Then J is an ideal in C( Y) which is contained in the closed ideal M, while

J—K is not an ideal.    G

Even though the closure of an ideal / need not be an ideal, we can still

give an explicit formula for / (cf. [GJ, 40]).

2.3 Theorem.   If I is an ideal in C(X), then

I={feC(X):Z(f*)^ nZ[/*]}.

Proof. Let / be an ideal in C(X), and define A = f| Z[I*] and /=

{/e C(*):Z(/*)2 A}. Clearly J is closed and IÇJ. It suffices to show that

J^I. So let/e/and £>0 (e real) be given. Letting

g=[(f-e)VO]+ [(/+£) A 0],
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we have \f—g\^s and Z(g*)2/*^((—£, e)), a neighborhood of A. We

must show that g e I. By compactness of ßX, there exist hu ht, • • • , hn 6 /

such that Z(g*) is a neighborhood of fl"=i Z(/7*). Defining h=hli+

V+- ■ •+*„*, we have A e / and Z(/i*)=flLi Z(A?). If we let

*(*) = *(*)/*(*)   for x G X ~ Z(g),

= 0 forxGZ(g),

then A: g CLY) and g=kh el.    D

2.4 Corollary.   An ideal I in C(X) is closed if and only if

/={/gC(*):Z(/*)2 nz[/*]}.

3. Ideal sets. We have shown that a closed ideal in C(X) consists of

all functions/whose extensions/* vanish on some fixed nonvoid compact

set. Let us now consider the problem in reverse. That is, let A be some

nonvoid compact subset of ßX, and form the set /={/e C(X):Z(f*)^A}.

Then / is a closed vector sublattice of C(X) but need not be an ideal. For

example, let X=N, the discrete space of positive integers, and &={p}

where p e ßN^N. Then / contains the unit/, where f(n)=\jn, even

though Ij¿C(X). We shall call A an ideal set if / is an ideal.

We now give a topological characterization of ideal sets, but first we

need a definition. We shall say that a subset S of ßX is far from X if there

exists a zero-set Z of ßX such that Sç Zç ßX~X; otherwise S is close to X.

Thus, X is realcompact if and only if each singleton subset of ßX~X is

far from X [GJ, 8.8], and X is Lindelöf if and only if each compact

subset of ßX~X is far from X [S]. Note that, by [GJ, 7D(1)],

c\ßx Z(f) = {pe ßX: (fg)*(p) = 0 for all g e C(X)}

for/G C(X).

3.1 Theorem. The following conditions are mutually equivalent for any

nonvoid compact subset A of ßX.

(a) A is an ideal set.

(b) A = fl Z[I*]for some closed ideal I in C(X).

(c) Z(/*)2 A implies c\ßx Z(f)=> A for allfe C(X).
(d) If S is far from X, then cliX(A~S) = A.

Proof,    (a) implies (b). Let /={/g C(A"):Z(/*)2 A).

(b) implies (c). Suppose that A=fl Z[/*] for some closed ideal /; then

by 2.4, /={/gC(A-):Z(/*)2A}. Let fe C(X) with Z(/*)=>A. Then
fel, whence/g g / for all g e C(X). But then

dßXZ(f) = R {Z((fg)*):g e C(A')) 2 A.
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(c) implies (d). Suppose that S is far from X, but there exists p e A

with/7 i c\ßX(A~S). Then there exist h, k e C*(X) such that SçZ(h*)ç

ßX~X, p$Z(k*) and A~S^Z(k*). Let f=hk and g=\\h. Then
Z(/*)=Z(/t*)uZ(Ar*)2A, butp £Z(k*)=Z((fg)*) so that/) £ cl^xZ(/).

(d) implies (a). Suppose that A is not an ideal set. Thus, if we let

I={fe C(I):Z(/*)2A}, then there exist/, g e C(X) such that/e / and

fg $ I. So Z(/*)2A and for some p e A, p $ Z((fg)*). Let Z be a zero-set

neighborhood of /> in /SA' such that ZnZ((fg)*)—0 ; then S'=AnZisfar

from X, since S<^Z(f*)r\Z<^ßX~X. ButZis a neighborhood of/? which

does not meet A~S, so cl^A^S^A.    □

It follows from 3.1 and 2.4 that every closed ideal is a z-ideal and there-

fore is absolutely convex (i.e. is an /-ideal; cf. [P, 3.7]).

It is clear from 3.1 that an ideal set must be close to X. The converse,

however, does not hold. For example, let X=N and A={l,p} where

p e ßN>~~>N. Then A is close to X, but is not an ideal set. We do have the

following partial converse.

3.2 Lemma. Any compact subset of ßX which is close to X contains an

ideal set.

Proof. Let A be a compact subset of ßX which is close to X, and

define A=(~) {clßX Z(h):Z(h*)^K}, a nonvoid compact subset of AT. We

shall use 3.1(c) to show that A is an ideal set. Thus, suppose that Z(f*)2 A

for some/e C(X). By the definition of A, for each/7 e ßX~Z(f*), there

exists h e C(X) such that Z(A*)2 K and p $ c\ßX Z(h). Since ßX~Z(f*)

is an F,, in ßX, it is Lindelöf, and therefore we can find gx,g2,g3, • • • e C(X)

such that Z(g*)^K for each n, and H«=i c\ßXZ(gn)cZ(f*). Defining

g=2^x(l¡2n)(lgn\M)eC(X), we have Z(g)=r)?-iZ(gn)çZ(f) and

Z(g*)=nZiZ(g:)^K. It follows that dßxZ(f)^c\ßxZ(g)^A.    D

4. Some corollaries. We now consider some consequences of 3.1 and

3.2. The first result follows also from [P, 2.6], where a more algebraic

proof is given.

4.1 Corollary. If the ideal I in C(X) is contained in a unique maximal

ideal (e.g., if I is prime), then I is closed if and only if I is a real ideal.

Proof. Clearly a real ideal is closed [GJ, 8.4]. Suppose that / is a

closed ideal which is contained in the unique maximal ideal Mv for some

p e ßX. Then 0*>Ql [GJ, 7.13], from which it follows that f| Z[I*] = {p}.
Thus, {p} is an ideal set, and it follows from 3.1 that, if q e ßXr^vX, then

chx({p}'~^{a}) — {p}—i.e.,^7^/». Hence p e WvVand I=MP, a real ideal.    □

It is clear that, for any nonvoid Fç X, the set cl^ E is an ideal set.
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The next result characterizes those X for which all ideal sets are of this

form. It can also be deduced from [P, 3.3 and 3.4].

4.2 Corollary.    The following conditions are mutually equivalent.

(a) X is Lindelof.
(b) Every ideal set in ßX is of the form c\ßX Efor some ££ X.

(c) Every ideal set in ßX meets X.

(d) Every closed ideal in C(X) is an intersection of fixed maximal ideals.

(e) Every closed ideal in C(X) is fixed.

Proof. , (a) implies (b). Assume (a), let A be an ideal set in ßX, and

suppose that p e ßX~c\ßx(Ar\X). Let F be a closed neighborhood of p

such that Fn(Ar\X)=0. Then S=FC\A is a compact subset of ßX~X,

and hence by 3.1(d), p $ clix(A~5)=A. Hence A=c\ßX(AnX), and (b)

holds.
(b) implies (c). Obvious.

(c) implies (a). Assume that (a) is false, so there exists a compact

subset K of ßX~X which is close to X. By 3.2, K contains an ideal set A,

so that (c) is false.

(b) if and only if (d). This follows easily from the fact that, for any

E^X,fe fi {Mp:p e E} if and only if c\ßX £çZ(/*).
(c) if and only if (e). A closed ideal {/g C(A"):Z(/*)2 A} is fixed if

. and only if A meets X.    □

In 4.1 we showed that an ideal in C(X) is a closed maximal ideal if and

only if it is real. Clearly every closed maximal ideal is a maximal closed

ideal. We conclude by proving the converse.

4.3 Corollary. An ideal in C(X) is a closed maximal ideal if and only

if it is a maximal closed ideal.

Proof. It suffices to show that every maximal closed ideal is a maximal

ideal. Thus, suppose that / is a maximal closed ideal in C(X), and let

A=f) Z[/*]. If A is not a singleton set, say qx, q2 e A with q19iq2, then

there exist compact sets /f, and K2 such that AT1UA"2=A, qiiKx and

q2 $ K2. At least one of K^ and K2, say Ku must be close to X. By 3.2, Kx

contains an ideal set Ax. But since q1eA<~^A1, the closed ideal /=

{feC(X):Z(f*)^Aj} is strictly bigger than /, contradicting the maxi-

mally of /. Therefore, we must have A={/>} for some p e ßX. But then

p g vX, and /= M", a maximal ideal.    □

References

[GJ] L. Gillman and M. Jerison, Rings of continuous junctions, University Series in

Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994.
[H] E. Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc.

64 (1948), 45-99. MR 10, 126.



606 PHILIP   NANZETTA  AND   DONALD   PLANK

[P] D. Plank, Closed l-ideals in a class of lattice-ordered algebras, Illinois J. Math. IS

(1971), 515-524.
[S] Ju. M. Smirnov, On normally disposed sets of normal spaces, Mat. Sb. 29 (71)

(1951), 173-176. (Russian) MR 13, 371.

Department of Mathematics, St. Mary's College of Maryland, St. Mary's

City, Maryland 20686 (Current address of Philip Nanzetta)

Department of Mathematics, Amherst College, Amherst, Massachusetts 01002

Current address (Donald Plank): Department of Mathematics, Stockton State

College, Pomona, New Jersey 08240


