FILTER CHARACTERIZATIONS OF C- AND C*-EMBEDDINGS

JOHN WILLIAM GREEN

ABSTRACT. A filter F on a space S is completely regular if the complement of each set in F is completely separated from some set in F. A characterization of the Stone-Čech compactification due to Alexandroff is used to establish the following theorem. Suppose K is a subspace of a Tychonoff space S. K is C^* -embedded in S if and only if the trace on K of every maximal completely regular filter on S intersecting K is maximal completely regular on K. A similar characterization of the C-embedded subsets of a Tychonoff space is obtained as are several related results.

A characterization of the Stone-Čech compactification βS of a Tychonoff space S due essentially to Alexandroff [1] is used to characterize the C^* -embedded subspaces of S. This result is used to obtain a second characterization of such subspaces as well as one of the C-embedded subspaces. A few related results are obtained.

Throughout this paper, K will refer to a subspace of a Tychonoff space S. The notion of a completely regular filter was introduced in [1] under the term "completely regular system" and referred to a certain type of what is now called a filtersubbase. The term used here, as well as the reduction to filters, apparently was introduced by Bourbaki. (See, for example, [4, Chapter IX, §1, exercises].) The characterization of βS given below may be found, at least implicitly, in [1], [3], [4], [5], [7] and, particularly, [9]. In [8], as in several other papers, completely regular filters are used for distinct, though related, purposes. The reader is assumed to be familiar with the results in [4], as well as Chapter 6 of [6]. The terminology is that of these two sources, for the most part.

Presented to the Society, January 18, 1972; received by the editors October 21, 1971. AMS 1970 subject classifications. Primary 54C45, 54D35.

Key words and phrases. Stone-Čech compactification, z-filter, completely regular filter, C*-embedding, C-embedding.

⁽e) American Mathematical Society 1972

free maximal completely regular filter on S having U as an element, then $B = \{U^* : U \in Y\}$ is a base for a topology on S^* with respect to which S^* is (homeomorphic to) βS . If x is a point of a space T, $\operatorname{Nbd}_T(x)$ is the neighborhood filter of x in the space T. If F is a filter on S, F is said to intersect K if each set in F intersects K, and F_K and $\operatorname{Tr}_K(F)$ are used for the trace of F on K. A filterbase G is coarser than a filterbase F (written $G \subseteq F$ or $F \supseteq G$) if each set in G contains a set in G. If G and G are filters on a set G, G if each set in G contains a set in G and G and is a filter on G, provided each set in G intersects each set in G.

LEMMA. If F is a maximal completely regular filter on K, there is a unique maximal completely regular filter on S coarser than F. Furthermore, if F is any free completely regular filter on K, there is a coarser completely regular filter on S whose trace on K is free.

PROOF. Suppose F is a free completely regular filter on K (relative to the subspace topology). Let $G=\{S-\operatorname{Cl}_s f: f\in F\}$. G is an S-open cover of K no finite subcollection of which covers K. For each x in K, let U_x denote some open set in G containing x and $\Phi_x=\{\phi\in L(S):\phi(x)=1$ and $\phi(S-U_x)=0\}$. For each finite collection H of ordered pairs (x,ϕ) such that $x\in K$ and $\phi\in\Phi_x$, let $\phi_H(t)=\sup\{\phi(t):(x,\phi)\in H\}$, for each t in S. $\phi_H\in L(S)$ and if 0<e<1, then (1) $\phi_H^{-1}[0,e) \not \to K$, for if $(x,\phi)\in H$, then $\phi(x)=1$; and (2) $\phi_H^{-1}[0,e)\cap K\neq\emptyset$, for otherwise, $K\subseteq\phi_H^{-1}[e,1]\subseteq\phi_H^{-1}(0,1]\subseteq\bigcup\{\phi^{-1}(0,1]:(x,\phi)\in H\}\subseteq\bigcup\{U_x:(x,\phi)\in H\}$, contrary to the fact that no finite subcollection of G covers K. It follows that the filter F' on S with base $\{\phi_H^{-1}[0,e):0<e<1$, H is a finite collection of ordered pairs (x,ϕ) such that $x\in K$ and $\phi\in\Phi_x\}$ is completely regular on S. It will be shown that $F'\subseteq F$. Suppose $f'\in F'$. For some

$$H = \{(x_n, \phi_n) : n \leq p, x_n \in K, \phi_n \in \Phi_{x_n}\}$$

and 0 < e < 1, $f' \supseteq \phi_H^{-1}[0, e)$. For each n, ϕ_n is 1 at x_n and for some $f_n \in F$, is 0 on $S - (S - \operatorname{Cl}_s f_n) = \operatorname{Cl}_s f_n \supseteq f_n$. $\bigcap_{n \le p} f_n = f \in F$. Thus, $\phi_n(f) = 0$ for each $n \le p$, so $\phi_H(f) = 0$. $f' \supseteq \phi_H^{-1}[0, e) \supseteq f$. Therefore, $F' \le F$.

Therefore, every free completely regular filter on K is finer than some (not necessarily free) completely regular filter on S whose trace on K is free. A simple application of Zorn's lemma establishes the existence of a filter F' maximal with respect to the property of being a completely regular filter on S coarser than F. F' is a maximal completely regular filter on S if F is on K. For suppose there is a completely regular filter G on S strictly finer than F'. $G \not \leq F$. sup $\{G_k, F\}$ does not exist (as a filter), for if it does, it is a completely regular filter on K strictly finer than the maximal completely regular filter F on K. It follows that there exist g in G and f in F such that $Cl_s g \cap Cl_s f = \emptyset$. There exist g_1 in G and ϕ in L(S)

such that $\phi(g_1)=1$ and $\phi(S-g)=0$. Let $F''=\sup\{F', \{\phi^{-1}[0, e): 0 < e < 1\}\}$. F'' is a completely regular filter on S strictly finer than F' and coarser than F. This is contrary to the definition of F'. Therefore, F' is a maximal completely regular filter on S. It is easily established that F' is unique. If F is a fixed maximal completely regular filter on K, then for some point K of K, $K = Nbd_K(X) = Tr_K(Nbd_S(X))$.

THEOREM 1. In order that K be C*-embedded in S, it is necessary and sufficient that the trace on K of every maximal completely regular filter on S intersecting K be maximal completely regular on K.

PROOF. The condition is sufficient. For suppose F is maximal completely regular on K and F' is the unique maximal completely regular filter on S coarser than F. It is easily seen that $F = F_K'$. Let $K' = K \cup \{F: F \text{ is a maximal completely regular filter on } S$ and F_K is free}. If $F \in K' - K$ and is fixed, F is the neighborhood system in S of some point of S - K with which it will be identified. If $F \in K' - K$ and is free, then F is a point in $\beta S - S$ and $\{f^*: f \in F\}$ is a base for the neighborhood filter in βS of the point F. It is easily established that $K' = \text{Cl}_{\beta S} K$ and hence is compact. Let $\phi: K' \to \beta K$ such that $\phi(x) = x$ if $x \in K$, $\phi(x) = \text{Tr}_K(\text{Nbd}_S(x))$ if $x \in K' \cap (S - K)$ and $\phi(x) = x_K$ if $x \in K' - S$. It is established above that ϕ is a bijection.

Suppose $x \in K'$ and U is a βK -open set containing $\phi(x)$.

- Case 1. Suppose $x \in K$. There exists an S-open set D containing x such that $D^*(K) = D \cap K \cup \{F: F \text{ is a free maximal completely regular filter on } K \text{ having } D \cap K \text{ as an element}\} \subseteq U$. $\phi(D^* \cap K') \subseteq D^*(K)$. For suppose $t \in D^* \cap S \cap K'$. $\phi(t) = t \in D^*(K)$. Suppose $t \in (D K) \cap K'$ and $F = \text{Nbd}_S(t)$. $\phi(t) = F_K$ and since $F \in D^*$, $F_K \in D^*(K)$. Suppose $t \in D^* \cap (K' S)$. $\phi(t) = t_K$ and since $D \in t$, $D \cap K \in t_K$. Thus, $\phi(D^* \cap K') \subseteq D^*(K) \subseteq U$ and $x \in D^* \cap K'$.
- Case 2. Suppose $x \in (K'-K) \cap S$. Let $F = \operatorname{Nbd}_S(x)$. $\phi(x) = F_K$. There exists f in F such that $f^*(K) \subseteq U$. $F_K \in f^*(K)$ and $F \in f^*$. That $\phi(f^* \cap K') \subseteq f^*(K) \subseteq U$ is established much as in Case 1.
- Case 3. Suppose $x \in K' S$. $\phi(x) = x_K$. There exists $f \in x$ such that $f^*(K) \subseteq U$. As in Case 2, $\phi(f^* \cap K') \subseteq f^*(K) \subseteq U$. Therefore, ϕ is continuous. A direct proof that ϕ^{-1} is continuous is not as simple, but homeomorphism is already established without that. So, $\beta K \subseteq \beta S$ and K is C^* -embedded in S.

The condition is necessary. For in this case, $\beta K \subseteq \beta S$. If F is a maximal completely regular filter on S fixed at a point x of K, then $F = \text{Nbd}_S(x)$ and $F_K = \text{Nbd}_K(x)$, which is maximal completely regular on K. Suppose F is a maximal completely regular filter on S intersecting K such that F_K is free. There is a maximal completely regular filter on K finer than the

completely regular filter F_K . Suppose there are two, G_1 and G_2 . G_1 and G_2 converge to distinct points of βK . Hence, F accumulates at two points of βS , which is impossible. Let F' denote the unique maximal completely regular filter on K finer than F_K . Suppose $F' \neq F_K$. Then there is a set f' in F', open in K, and containing no set in F_K . Thus, for every closed g in F, $g \cap K - f'$ is a nonempty set closed in K. Since βK is compact, $\bigcap \{\operatorname{Cl}_{\beta K} g \cap K - f' : g = \operatorname{Cl}_S g \in F\}$ contains a point, P, which is a βS -accumulation point of F but not of F'. F' converges in βK to $F' \neq P$. It follows that F accumulates at the two points P and F', which is impossible. Therefore, $F_K = F'$.

COROLLARY. If K is a discrete subspace of S, then K is C^* -embedded in S if and only if the trace on K of every maximal completely regular filter on S intersecting K is an ultrafilter on K.

THEOREM 2. In order that K be C*-embedded in S, it is necessary and sufficient that every maximal completely regular filter on K be the trace on K of a maximal completely regular filter on S.

PROOF. The condition is sufficient. For suppose F is a maximal completely regular filter on S intersecting K. F_K is completely regular on K, so there exists a maximal completely regular filter G on S such that G_K is finer than F_K and is maximal completely regular. Since G_K and F_K are compatible, so are F and G; and since F and G are maximal, F = G. Thus, F_K is maximal completely regular and the stated result follows from Theorem 1.

The necessity of the condition follows easily from Theorem 1 and the lemma.

Theorem 3. If K is C^* -embedded in S, the trace on K of every z-ultrafilter on S intersecting K is a z-ultrafilter on K.

PROOF. Suppose J is a z-ultrafilter on S intersecting K. Let F denote the unique maximal completely regular filter on S coarser than J. $F_K \leq J_K$ and by Theorem 1 is maximal completely regular on K. There is a unique z-ultrafilter Q on K finer than F_K . Suppose there exist U in J_K and V in Q such that $U \cap V = \emptyset$. Then there exists $\phi \in L(K)$ such that $\phi^{-1}(0) = U$ and $\phi^{-1}(1) = V$. ϕ has a continuous extension ϕ_1 in L(S). $\phi_1^{-1}[0, 1] \in F$ since each set in F intersects $\phi_1^{-1}[0, \frac{1}{2}]$. Thus, the subset U of $\phi_1^{-1}(1)$ fails to intersect some set in F_K and yet $J_K \geq F_K$. This is a contradiction. Thus, each set in Q intersects each set in J_K . Since Q is a z-ultrafilter on K, $Q \supseteq J_K$. Suppose $V \in Q$. There exists ϕ in L(K) such that $\phi^{-1}(0) = V$. ϕ has a continuous extension ϕ_1 in L(S). Since V intersects every set in J_K , $\phi_1^{-1}(0)$ intersects every set in J and thus belongs to J. Hence, $\phi_1^{-1}(0) \cap K = V \in J_K$. It follows that $Q = J_K$.

The converse of the above theorem is false, even if the closure in S of every zero set in K is a zero set in S. In this regard, Lemma 3 of [2] may be of interest, where the normal base is the collection of all zero sets.

EXAMPLE. Let S = [0, 1], K = [0, 1) with the usual topologies. Obviously, K is not C^* -embedded in S. The only z-ultrafilters on S intersecting K are those fixed at a point of K. If Z is a zero set in K, then $\operatorname{Cl}_S Z$ is a zero set in S since it is closed and S is metric.

THEOREM 4. In order that K be C-embedded in S, it is necessary and sufficient that every z-ultrafilter on K be the trace of a z-ultrafilter on S.

PROOF. The condition is necessary. For by Theorems 1 and 3, $\beta K \subseteq \beta S$, and the trace on K of every z-ultrafilter on S intersecting K is a z-ultrafilter on K. Suppose F is a z-ultrafilter on K. Let G denote the unique maximal completely regular filter on S coarser than F, so that G_K is the unique maximal completely regular filter on K coarser than F. Let F denote the unique F-ultrafilter on F finer than F suppose some set F in F does not intersect F since F is F-embedded in F, there exists F in F in F such that F-1(0)F and F-1(1)F-1 for each F in F-1(0, F-1)F-1 for each F-1 in F-1 for each F-1 in F-1 for each F-1 for e

The condition is sufficient. It will first be shown that K is C^* -embedded in S. It follows easily from the hypothesis that the trace on K of every z-ultrafilter on S intersecting K is a z-ultrafilter on K. Suppose F is a maximal completely regular filter on K. Let J denote the unique z-ultrafilter on S such that $J_K \ge F$. Let G denote the unique maximal completely regular filter on S coarser than J. There exists a maximal completely regular filter T on K finer than G_K and a unique z-ultrafilter Q on S such that $Q_K \ge T$. From the first lemma, there is only one maximal completely regular filter on S coarser than T and $T \ge G_K \ge G$. Thus, G is that unique filter. Since $Q_K \ge T$, $Q \ge G$. Thus, Q and J are z-ultrafilters on S finer than G. It follows that Q=J and $Q_K=J_K$ and T=F. It follows that F is the only maximal completely regular filter on K finer than G_K . Suppose $F \neq G_K$. Then there exists f in F such that for every g in G_K , $g-f \neq \emptyset$. There exist f_1 in F and $\phi \in L(K)$ such that $\phi(f_1)=1$ and $\phi(K-f)=0$. Thus, if 0 < e < 1, $\phi^{-1}[0, e) \cap f_1 = \emptyset$, but if $g \in G_K$, $\phi^{-1}[0, e) \cap g \neq \emptyset$. There is a z-ultrafilter W on S such that

$$W_K \geqq H = \sup\{G_K, \{\phi^{-1}[0, e) : 0 < e < 1\}\}.$$

Since H and F are incompatible, W_K and F are also. But since $W_K \ge H \ge G_K$, it follows that $W \ge G$ and W = J. This is contrary to the incompatibility of W_K and $J_K \ge F$. Therefore, $F = G_K$. By Theorem 2, K is C^* -embedded in S.

Suppose K is not C-embedded in S. From Theorem 1.18 of [6], it follows that there is a zero set Z in S not intersecting K such that if $g \in C^*(S)$ and $g^{-1}(0) = Z$, then for each e > 0, $g^{-1}[0, e] \cap K \neq \emptyset$. Let $F_1 = \{g^{-1}[0, e) \cap K : 0 < e, g \in C^*(S)$ and $g^{-1}(0) = Z\}$. F_1 is a base for a z-filter on K. Hence, there is a z-ultrafilter F on K finer than F_1 . F is the trace on K of some z-ultrafilter F on F in F is the trace on F of some F in F is the trace on F of some F in F is the trace on F in F in F is the trace on F in F in F in F is the trace on F in F in

A minor modification of the argument in the last paragraph above establishes the following.

THEOREM 5. If K is C^* -embedded in S and every z-ultrafilter on K is finer than some z-ultrafilter on S, then K is C-embedded in S.

The following summary of Theorems 2 and 4 was suggested by the referee. It should be noted, however, that while the trace of a completely regular filter on S on an arbitrary subset K is completely regular on K, the same is not true of e-filters without some restriction on K.

Theorem 6. K is C- $[C^*-]$ embedded in S if and only if every z- [e-] ultrafilter on K is the trace of a z- [e-] ultrafilter on S.

THEOREM 7. If K is countable, then K is C-embedded in S if and only if K is completely separated from every zero set in S not intersecting K.

PROOF. Suppose K is completely separated from every zero set in S not intersecting K. It follows from 3B.1 of [6] that K is closed and completely separated from every closed set not intersecting S. Suppose K'_1 and K'_2 are subsets of K completely separated in K. There exists ϕ in L(K) such that $\phi(K'_1)=0$ and $\phi(K'_2)=1$. Since K is countable, there exists 0 < r < 1 such that $\phi^{-1}(r) \cap K = \emptyset$. It follows that $K_1 = K \cap \phi^{-1}[0, r]$ and $K_2 = K \cap \phi^{-1}[r, 1]$ are completely separated in K, contain K'_1 and K'_2 respectively, and $K = K_1 \cup K_2$.

Every closed subset of K is the intersection of K and a zero in S. For suppose H is a closed subset of K. For each x in K-H, there is a zero set Z_x in S containing H but not containing x. $\bigcap Z_x$ is the intersection of countably many zero sets in S and thus is a zero set whose intersection with K is H.

Thus, there exist zero sets Z_1 and Z_2 in S such that $Z_1 \cap K = K_1$ and $Z_2 \cap K = K_2$. $Z_1 \cap Z_2$ is a zero set not intersecting K and so, by hypothesis, there is a zero set Z in S containing K and not intersecting $Z_1 \cap Z_2$. $Z \cap Z_1$ and $Z \cap Z_2$ are mutually exclusive zero sets in S containing K_1 and

 K'_2 , respectively. Hence, each two sets completely separated in K are completely separated in S. By Urysohn's extension theorem, K is C^* -embedded in S. It follows from Theorem 1.18 of [6] that K is C-embedded in S. That the converse is true is obvious.

Thus, statements 1 and 3 of problem 3L.4 of [6] remain equivalent even if the requirement that D be discrete is omitted.

REFERENCES

- 1. P. S. Aleksandrov, Bikompakte Erweiterung topologischer Räume, Mat. Sb. 5 (47) (1939), 403-423. (Russian) MR 1, 318.
- 2. R. A. Alo and H. L. Shapiro, *L*-realcompactifications and normal bases, J. Austral. Math. Soc. 9 (1969), 489-495. MR 39 #3455.
- 3. B. Banaschewski, Über zwei Extremaleigenschaften topologischer Räume, Math. Nachr. 13 (1955), 141-150. MR 17, 66.
- 4. N. Bourbaki, Éléments de mathématique. Part. 1. Les structures fondamentales de l'analyse. Livre III: Topologie générale, Actualités Sci. Indust., no. 1029, Hermann, Paris, 1947; English transl., Addison-Wesley, Reading, Mass., 1966. MR 9, 261; MR 34 #5044b.
- 5. Ky Fan and N. Gottesman, On compactifications of Freudenthal and Wallman, Nederl. Akad. Wetensch. Proc. Ser. A 55=Indag. Math. 14 (1952), 504-510. MR 14, 669
- 6. L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994.
- 7. O. Njästad, A note on compactification by bounding systems, J. London Math. Soc. 40 (1965), 526-532. MR 33 #1832.
- 8. R. M. Stephenson, Jr., Product spaces for which the Stone-Weierstrass theorem holds, Proc. Amer. Math. Soc. 21 (1969), 284-288. MR 40 #3499.
- 9. F. J. Wagner, *Notes on compactification*. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 60=Indag. Math. 19 (1957), 171-176, 177-181. MR 19, 436.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OKLAHOMA 73069