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ABSIRACT. A filter F on a space S is completely regular if the
complement of each set in F is completely separated from some set
in F. A characterization of the Stone-Cech compactification due
to Alexandroff is used to establish the following theorem. Suppose K
is a subspace of a Tychonoff space S. X is C*-embedded in S if and
only if the trace on K of every maximal completely regular filter on §
intersecting K is maximal completely regular on K. A similar
characterization of the C-embedded subsets of a Tychonoff space is
obtained as are several related results.

A characterization of the Stone-Cech compactification 8 of a Tychonoff
space S due essentially to Alexandroff [1] is used to characterize the
C*-embedded subspaces of S. This result is used to obtain a second
characterization of such subspaces as well as one of the C-embedded
subspaces. A few related results are obtained.

Throughout this paper, K will refer to a subspace of a Tychonoff space
S. The notion of a completely regular filter was introduced in [1] under
the term “completely regular system’ and referred to a certain type of
what is now called a filtersubbase. The term used here, as well as the
reduction to filters, apparently was introduced by Bourbaki. (See, for
example, [4, Chapter IX, §1, exercises].) The characterization of SS
given below may be found, at least implicitly, in [1], [3], [4], [5], [7] and,
particularly, [9]. In [8], as in several other papers, completely regular
filters are used for distinct, though related, purposes. The reader is
assumed to be familiar with the results in [4], as well as Chapter 6 of [6].
The terminology is that of these two sources, for the most part.

A filter F on S is completely regular if for each U in F, there exist V'
in Fand ¢ in L(S) (=the set of all functions in C(S) with range a subset
of [0, 1]) such that ¢ isO on Vand I on S—U. It should be noted that every
completely regular filter has as base an e-filter [6, problem 2L] and the
filter (in the lattice of all subsets of S) generated by an e-filter is completely
regular. If Y is the topology of S and for each U< S, U*=UU{F:Fisa
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free maximal completely regular filter on S having U as an element}, then
B={U*:Ue€ Y} is a base for a topology on S* with respect to which §*
is (homeomorphic to) AS. If x is a point of a space T, Nbdy(x) is the neigh-
borhood filter of x in the space T. If F is a filter on S, F is said to intersect
K if each set in F intersects K, and Fy- and Try(F) are used for the trace
of Fon K. A filterbase G is coarser than a filterbase F (written G F or
FZG) if each set in G contains a set in F. If F and G are filters on a set 7,
sup{F, G}={U<T:U=fNg for some f in F and g in G} and is a filter
on T, provided each set in F intersects each set in G.

LeMMA. If F is a maximal completely regular filter on K, there is a
unique maximal completely regular filter on S coarser than F. Furthermore,
if F is any free completely regular filter on K, there is a coarser completely
regular filter on S whose trace on K is free.

PrOOF. Suppose F is a free completely regular filter on K (relative to
the subspace topology). Let G={S—Cl, f:f € F}. G is an S-open cover of
K no finite subcollection of which covers K. For each x in K, let U, denote
some open set in G containing x and ®,={¢ e L(S):¢(x)=1 and
é(S—U,)=0}. For each finite collection H of ordered pairs (x, ¢) such
that x € K and ¢ € @, let ¢4 (t)=sup{$(r): (x, ¢) € H}, for each ¢ in S.
éy € L(S) and if 0<e<1, then (1) ¢z [0, e)2 K, for if (x, ¢) € H, then
é(x)=1; and (2) ¢7[0,e)NK#gz, for otherwise, K<d¢xle, 1]
70, 11 U {6710, 1]:(x, ¢) € H}= U {U,:(x, $) € H}, contrary to the
fact that no finite subcollection of G covers K. It follows that the filter F’
on S with base {¢7'[0,e):0<e<1, H is a finite collection of ordered
pairs (x, ) such that x € K and ¢ € ®,} is completely regular on S. It
will be shown that F'<F. Suppose /" € F’'. For some

H= {(xn’ ¢n):n ép* Xn EK’ (}Sn E(D.Tn}

and 0<e<1, 270, e). For each n, ¢, is 1 at x,, and for some f, € F,
is 0 on S—(S—Cl, f,)=Cl, f,.2f,. Nnz» [»=f € F. Thus, ¢,(f)=0 for
each n=p, so ¢ (f)=0. /' 247 [0, e)=2f. Therefore, F'<F.

Therefore, every free completely regular filter on K is finer than some
(not necessarily free) completely regular filter on S whose trace on K is
free. A simple application of Zorn’s lemma establishes the existence of a
filter F’ maximal with respect to the property of being a completely
regular filter on S coarser than F. F’ is a maximal completely regular
filter on S if F is on K. For suppose there is a completely regular filter G
on S strictly finer than F’. GXF. sup{G,, F} does not exist (as a filter),
for if it does, it is a completely regular filter on K strictly finer than the
maximal completely regular filter F on K. It follows that there exist g in G
and fin F such that Cl,gNCl, f=g. There exist g, in G and ¢ in L(S)
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such that ¢(g,)=1 and ¢(S—g)=0. Let F"=sup{F’, {¢71[0, e):0<e<1}}.
F" is a completely regular filter on S strictly finer than F’ and coarser than
F. This is contrary to the definition of F’. Therefore, F’ is a maximal com-
pletely regular filter on S. It is easily established that F’ is unique. If F
is a fixed maximal completely regular filter on K, then for some point x
of K, F=Nbd g (x)=Trx(Nbdg(x)).

THEOREM 1. In order that K be C*-embedded in S, it is necessary and
sufficient that the trace on K of every maximal completely regular filter on S
intersecting K be maximal completely regular on K.

Proor. The condition is sufficient. For suppose F is maximal com-
pletely regular on K and F’ is the unique maximal completely regular
filter on S coarser than F. It is easily seen that F=Fg. Let K'=KU
{F:F is a maximal completely regular filter on S and Fy is free}. If
Fe K'—K and is fixed, F is the neighborhood system in S of some point
of §—K with which it will be identified. If F e K'—K and is free, then F
is a point in S—S and {f*:f€ F} is a base for the neighborhood filter
in BS of the point F. It is easily established that K'=Clgg K and hence is
compact. Let ¢: K'—pK such that ¢(x)=x if x € K, ¢(x)=Trx(Nbdg(x))
if x € K'N(S—K) and ¢(x)=xy if x € K'—S. It is established above that
¢ is a bijection.

Suppose x € K’ and U is a fK-open set containing ¢(x).

Case 1. Suppose x € K. There exists an S-open set D containing x
such that D*(K)=DNKU{F:F is a free maximal completely regular
filter on K having DNK as an element}c U. ¢(D*NK’)< D*(K). For
suppose t € D*NSNK'. $(t)=t e D*(K). Suppose t € (D—K)NK' and
F=Nbdg(r). $(t)=Fy and since F € D*, Fy € D*(K). Suppose t € D*N
(K'=S). ()=t and since Det, DNKetyg. Thus, $(D*NK')c
D*(K)c U and x € D*NK’.

Case 2. Suppose x € (K'—K)NS. Let F=Nbdg(x). $(x)=Fg. There
exists fin Fsuch that f*(K)S U. Fi € f*(K)and F € f*. That (f*NK')<
f*(K)= U is established much as in Case 1.

Case 3. Suppose x € K'—S. ¢(x)=xg. There exists f€ x such that
f*(K)s U.AsinCase2,$(f*NK')= f*(K)< U. Therefore, ¢ is continuous.
A direct proof that ¢~ is continuous is not as simple, but homeomorphism
is already established without that. So, K< S and K is C*-embedded
in S.

The condition is necessary. For in this case, K< S. If F is a maximal
completely regular filter on S fixed at a point x of K, then F=Nbdg(x)
and Fyi=Nbdg(x), which is maximal completely regular on K. Suppose
F is a maximal completely regular filter on S intersecting K such that F
is free. There is a maximal completely regular filter on K finer than the
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completely regular filter Fy.. Suppose there are two, G, and G,. G, and G,
converge to distinct points of SK. Hence, F accumulates at two points of
BS, which is impossible. Let F’ denote the unique maximal completely
regular filter on K finer than Fy. Suppose F'#Fj. Then there is a set
f'in F’, open in K, and containing no set in Fy. Thus, for every closed g
in F, gNnK—f" is a nonempty set closed in K. Since BK is compact,
N{Clyx gNK—f":g=Clgg € F} contains a point, P, which is a BS-
accumulation point of F but not of F'. F’ converges in K to F'#P. It
follows that F accumulates at the two points P and F’, which is impossible.
Therefore, Fi=F".

CoroLLARY. If K is a discrete subspace of S, then K is C*-embedded
in S if and only if the trace on K of every maximal completely regular filter
on S intersecting K is an ultrafilter on K.

THEOREM 2. In order that K be C*-embedded in S, it is necessary and
sufficient that every maximal completely regular filter on K be the trace on K
of a maximal completely regular filter on S.

Proor. The condition is sufficient. For suppose F is a maximal com-
pletely regular filter on S intersecting K. Fj is completely regular on K,
so there exists a maximal completely regular filter G on § such that G
is finer than Fy and is maximal completely regular. Since G and Fy
are compatible, so are F and G; and since F and G are maximal, F=G.
Thus, Fj is maximal completely regular and the stated result follows
from Theorem 1.

The necessity of the condition follows easily from Theorem | and the
lemma.

THEOREM 3. If K is C*-embedded in S, the trace on K of every z-ultra-
filter on S intersecting K is a z-ultrafilter on K.

PROOF. Suppose J is a z-ultrafilter on S intersecting K. Let F denote
the unique maximal completely regular filter on S coarser than J. Fp =Jy
and by Theorem 1 is maximal completely regular on K. There is a unique
z-ultrafilter Q on X finer than Fj.. Suppose there exist U in J; and Vin Q
such that UNnV=g. Then there exists ¢ € L(K) such that ¢1(0)=U
and ¢ '(1)=V. ¢ has a continuous extension ¢; in L(S). ¢;'[0, 1) e F
since each set in F intersects ¢7°[0, }). Thus, the subset U of ¢7*(1) fails to
intersect some set in Fj and yet J = F,. This is a contradiction. Thus,
each set in Q intersects each set in J. Since Q is a z-ultrafilter on X,
02Jg. Suppose Ve Q. There exists ¢ in L(K) such that ¢1(0)=V. ¢
has a continuous extension ¢, in L(S). Since V intersects every set in J,
#7'(0) intersects every set in J and thus belongs to J. Hence, ¢;(0)NK=
Ve Jy. It follows that 0=J,..
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The converse of the above theorem is false, even if the closure in S of
every zero set in K is a zero set in S. In this regard, Lemma 3 of [2] may be
of interest, where the normal base is the collection of all zero sets.

ExampLE. Let S=[0, 1], K=[0, 1) with the usual topologies. Obvi-
ously, K is not C*-embedded in S. The only z-ultrafilters on S intersecting
K are those fixed at a point of K. If Z is a zero set in K, then ClgZ is a
zero set in .S since it is closed and S is metric.

THEOREM 4. In order that K be C-embedded in S, it is necessary and
sufficient that every z-ultrafilter on K be the trace of a z-ultrafilter on S.

Proor. The condition is necessary. For by Theorems 1 and 3, BK<
BS, and the trace on K of every z-ultrafilter on S intersecting K is a z-
ultrafilter on K. Suppose F is a z-ultrafilter on K. Let G denote the unique
maximal completely regular filter on S coarser than F, so that G is the
unique maximal completely regular filter on K coarser than F. Let J
denote the unique z-ultrafilter on S finer than G. Suppose some set U
in J does not intersect K. Since K is C-embedded in S, there exists g in
L(S) such that g7'(0)= K and g~*(1)2 U. Foreach e in (0, 1), g71[0, ) € G
and hence, J ;G . This is a contradiction. Thus, J intersects K and J is a
z-ultrafilter on K. Since J= G, J;- =G . There is only one z-ultrafilter on X
finer than Gx. Hence, Jix=F.

The condition is sufficient. It will first be shown that K is C*-embedded
in S. It follows easily from the hypothesis that the trace on K of every
z-ultrafilter on S intersecting K is a z-ultrafilter on K. Suppose F is a
maximal completely regular filter on K. Let J denote the unique z-ultra-
filter on S such that Jp = F. Let G denote the unique maximal completely
regular filter on S coarser than J. There exists a maximal completely
regular filter T on K finer than G- and a unique z-ultrafilter Q on S such
that Q= T. From the first lemma, there is only one maximal completely
regular filter on S coarser than T and TZG=G. Thus, G is that unique
filter. Since Qi =T, Q=G. Thus, Q and J are z-ultrafilters on S finer than
G. It follows that O=J and Q, =J, and T=F. It follows that F is the
only maximal completely regular filter on K finer than Gy. Suppose
F # G . Then there exists fin F such that for every g in Gk, g—f# 3.
There exist f; in F and ¢ € L(K) such that ¢(f;)=1 and ¢(K—f)=0.
Thus, if 0<e<1, ¢71[0,e)Nfi=o, but if ge Gy, ¢7[0,e)Ng# 3.
There is a z-ultrafilter W on S such that

W, = H = sup{Gg, {¢71[0,¢):0 < e < 1}}.
Since H and F are incompatible, W and F are also. But since Wy =
HZ=Gy, it follows that W =G and W=J. This is contrary to the incom-
patibility of W, and J,=ZF. Therefore, F=G. By Theorem 2, K is
C*-embedded in S.
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Suppose K is not C-embedded in S. From Theorem 1.18 of [6], it follows
that there is a zero set Z in S not intersecting K such that if g € C*(S) and
g7(0)=Z, then for each >0, g71[0,e]NK7# @ . Let F;={g'[0,e)N
K:0<e, g € C*(S) and g~}(0)=Z}. F, is a base for a z-filter on K. Hence,
there is a z-ultrafilter F on X finer than F,. F is the trace on K of some
z-ultrafilter J on S, by hypothesis. Z ¢ J, since ZNK= @, so there exists
V € J such that VNZ= . Since Z and V are zero sets in S, there exists g
in L(S) such that g71(0)=Z and g~!(1)=V. But if 0<e<1, g7[0, e]N
K e F©Jy and thus, g7'[0, e]JN V3 & . This is a contradiction. Therefore,
K is C-embedded in S.

A minor modification of the argument in the last paragraph above
establishes the following.

THEOREM 5. If K is C*-embedded in S and every z-ultrafilter on K is
finer than some z-ultrafilter on S, then K is C-embedded in S.

The following summary of Theorems 2 and 4 was suggested by the
referee. It should be noted, however, that while the trace of a completely
regular filter on S on an arbitrary subset K is completely regular on X,
the same is not true of e-filters without some restriction on K.

THEOREM 6. K is C- [C*-] embedded in S if and only if every z- [e-]
ultrafilter on K is the trace of a z- [e-] ultrafilter on S.

THEOREM 7. If K is countable, then K is C-embedded in S if and only if
K is completely separated from every zero set in S not intersecting K.

PrOOF. Suppose K is completely separated from every zero set in S
not intersecting K. It follows from 3B.1 of [6] that K is closed and com-
pletely separated from every closed set not intersecting S. Suppose K;
and K, are subsets of K completely separated in K. There exists ¢ in L(K)
such that ¢(K;)=0 and #(K;)=1. Since K is countable, there exists
0<r<1 such that ¢}(r)NK=g. It follows that K;=KN¢ 1[0, r] and
K,=KnN¢[r, 1] are completely separated in K, contain K; and K,
respectively, and K=K, UK.

Every closed subset of K is the intersection of K and a zero in S. For
suppose H is a closed subset of K. For each x in K— H, there is a zero
set Z, in S containing H but not containing x. () Z, is the intersection of
countably many zero sets in S and thus is a zero set whose intersection
with K'is H.

Thus, there exist zero sets Z, and Z, in S such that Z,NK=K,
and Z,NK=K,. Z,NZ, is a zero set not intersecting K and so, by hypoth-
esis, there is a zero set Z in S containing K and not intersecting Z, N Z,.
ZNZ, and ZNZ, are mutually exclusive zero sets in S containing K; and
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K;, respectively. Hence, each two sets completely separated in K are com-
pletely separated in S. By Urysohn’s extension theorem, K is C*-embedded
in S. It follows from Theorem 1.18 of [6] that K is C-embedded in S.
That the converse is true is obvious.

Thus, statements 1 and 3 of problem 3L.4 of [6] remain equivalent
even if the requirement that D be discrete is omitted.
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