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Absiract. A filter Fon a space S is completely regular if the

complement of each set in F is completely separated from some set

in F. A characterization of the Stone-Cech compactification due

to Alexandroff is used to establish the following theorem. Suppose K

is a subspace of a Tychonoff space S. K is C*-embedded in S if and

only if the trace on A- of every maximal completely regular filter on S

intersecting K is maximal completely regular on K. A similar

characterization of the C-embedded subsets of a Tychonoff space is

obtained as are several related results.

A characterization of the Stone-Cech compactification ßS of a Tychonoff

space S due essentially to Alexandroff [1] is used to characterize the

C*-embedded subspaces of S. This result is used to obtain a second

characterization of such subspaces as well as one of the C-embedded

subspaces. A few related results are obtained.

Throughout this paper, K will refer to a subspace of a Tychonoff space

S. The notion of a completely regular filter was introduced in [1] under

the term "completely regular system" and referred to a certain type of

what is now called a filtersubbase. The term used here, as well as the

reduction to filters, apparently was introduced by Bourbaki. (See, for

example, [4, Chapter IX, §1, exercises].) The characterization of ßS

given below may be found, at least implicitly, in [1], [3], [4], [5], [7] and,

particularly, [9]. In [8], as in several other papers, completely regular

filters are used for distinct, though related, purposes. The reader is

assumed to be familiar with the results in [4], as well as Chapter 6 of [6].

The terminology is that of these two sources, for the most part.

A filter F on S is completely regular if for each U in F, there exist V

in Fand <f> in L(S) (=the set of all functions in C(S) with range a subset

of [0, 1 ]) such that </> is 0 on Fand 1 on 5—U. It should be noted that every

completely regular filter has as base an e-filter [6, problem 2L] and the

filter (in the lattice of all subsets of S) generated by an e-filter is completely

regular. If Y is the topology of S and for each í/cS, £/* = t/U{F:Fis a
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free maximal completely regular filter on S having U as an element}, then

B={U*:U e Y} is a base for a topology on S* with respect to which S*

is (homeomorphic to) ßS. If x is a point of a space T, Nbdr(x) is the neigh-

borhood filter of x in the space T. If Fis a filter on S, Fis said to intersect

K if each set in F intersects K, and FK and Tr^-iF) are used for the trace

of F on K. A filterbase G is coarser than a filterbase F (written G_F or

F^.G) if each set in G contains a set in F. If Fand G are filters on a set T,

sup{F, G}={(/£ T: U^fC\g for some / in F and g in G} and is a filter

on T, provided each set in F intersects each set in G.

Lemma. If F is a maximal completely regular filter on K, there is a

unique maximal completely regular filter on S coarser than F. Furthermore,

if F is any free completely regular filter on K, there is a coarser completely

regular filter on S whose trace on K is free.

Proof. Suppose F is a free completely regular filter on K (relative to

the subspace topology). Let G={S—Cls f:fe F}. G is an S-open cover of

K no finite subcollection of which covers K. For each x in K, let Ux denote

some open set in G containing x and Q>x={<f> e L(S):<f>(x)=l and

</>(S— Ux)=0}. For each finite collection H of ordered pairs (x, </>) such

that x e K and $ e <t>x, let <f>H(t)=sup{<f>(t):(x, <¡>) e H), for each t in S.

<f>H e L(S) and if 0<e< 1, then (1) <¿y/[0, e)$K, for if (x, $) e H, then

<¡t(x)=l; and (2) <f>£[O,e)nKi¿0, for otherwise, K^<f>j}[e, 1]Ç

4>b(P, 1]= U {^_1(0, 1]:(x, <£) e //}£ U {#«:(*, <¿) e //}, contrary to the
fact that no finite subcollection of G covers K. It follows that the filter F'

on S with base {^[0, e):0<e<\, H is a finite collection of ordered

pairs (x, (j>) such that jeX and <f> e <S>X} is completely regular on S. It

will be shown that F'^F. Suppose/' e F'. For some

H = {(*„, <¡>n):n = />, x„ e ,rV, <^,„ 6 <S>:rJ

and 0<e<l,/'2«r^ir1[0, t?). For each «, c/>„ is 1 at x„ and for some/, e F,

is 0 on S-(S-C\sfn) = C\Jn^fn. Ç\n<Pfn=f£F. Thus, ^(/) = 0for

each n£p, so ^H(/)=0./,2fe1[0, e)2/ Therefore, F'<F.
Therefore, every free completely regular filter on K is finer than some

(not necessarily free) completely regular filter on S whose trace on K is

free. A simple application of Zorn's lemma establishes the existence of a

filter F' maximal with respect to the property of being a completely

regular filter on S coarser than F. F' is a maximal completely regular

filter on S if F is on K. For suppose there is a completely regular filter G

on 5 strictly finer than F'. G¿F. sup{Gt, F} does not exist (as a filter),

for if it does, it is a completely regular filter on K strictly finer than the

maximal completely regular filter F on K. It follows that there exist g in G

and /in F such that ClsgnCls/=0. There exist g, in G and </> in L(S)
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such that ¿(£0=1 and<f>(S-g)=0. Let F"=sup{F', {¿-1[0,<?):0<e<l}}.

F" is a completely regular filter on S strictly finer than F' and coarser than

F. This is contrary to the definition of F'. Therefore, F' is a maximal com-

pletely regular filter on S. It is easily established that F' is unique. If F

is a fixed maximal completely regular filter on K, then for some point x

oîK, F=NbdJC(x)=TrJC(Nbds(x)).

Theorem 1. In order that K be C*-embedded in S, it is necessary and

sufficient that the trace on K of every maximal completely regular filter on S

intersecting K be maximal completely regular on K.

Proof. The condition is sufficient. For suppose F is maximal com-

pletely regular on K and F' is the unique maximal completely regular

filter on 5 coarser than F. It is easily seen that F=F'K. Let K'=Ku

{F:F is a maximal completely regular filter on S and FK is free}. If

Fe K'—K and is fixed, F is the neighborhood system in S of some point

of S—K with which it will be identified. If F e K'—K and is free, then F

is a point in ßS—S and {/*:/eF} is a base for the neighborhood filter

in ßS of the point F. It is easily established that K'=ClßS K and hence is

compact. Let 4>.K'->-ßK such that ¿(x)=x if x e K, f/>(x)=TrK(Nbds(x))

if x e K'n(S-K) and <f>(x)=xK if x e K'-S. It is established above that

<f> is a bijection.

Suppose x e K' and U is a ßK-open set containing <f>(x).

Case 1. Suppose x e A". There exists an S-open set D containing x

such that D*(K)=DC\Kkj{F:F is a free maximal completely regular

filter on K having Dr\K as an element}çt/. <f>(D*nK')^D*(K). For

suppose t 6 D*riSnlK'. <f>(t)—t e D*(K). Suppose te(D-K)r\K' and

F=Nbds(r). <f>(t)=FK and since Fe D*, FK e D*(K). Suppose te D*C\

(K'-S). <f>(t) = tK and since D e t, Dr\KetK. Thus, <f>{D*r\K')<^

D*(K)çU and xeD*r\K'.

Case 2. Suppose x e (K'-K)nS. Let F=Nbds(x). <f>(x)=FK. There

exists/in Fsuch that/*(/0i= U. FK ef*(K)and Fef*. That<f>(f*C\K')^
f*(K)<^ U is established much as in Case 1.

Case 3. Suppose xeK' — S. <j>(x)=xK. There exists/ex such that

f*(K)^U.AsmCase2,<f>(f*r\K')çf*(K)çU. Therefore, ¿is continuous.

A direct proof that <¡>~l is continuous is not as simple, but homeomorphism

is already established without that. So, ßK^ßS and K is C*-embedded

in S.

The condition is necessary. For in this case, ßKcßS. If Fis a maximal

completely regular filter on 5 fixed at a point x of K, then F=Nbds(x)

and FA- = Nbd7f(x), which is maximal completely regular on K. Suppose

Fis a maximal completely regular filter on S intersecting K such that FK

is free. There is a maximal completely regular filter on K finer than the



1972] FILTER  CHARACTERIZATIONS OF  C-  AND   C*-EMBEDD1NGS 577

completely regular filter FK. Suppose there are two, Gx and G2. Gj and G2

converge to distinct points of ßK. Hence, F accumulates at two points of

ßS, which is impossible. Let F' denote the unique maximal completely

regular filter on K finer than FK. Suppose F'^FK. Then there is a set

/' in F', open in K, and containing no set in FK. Thus, for every closed g

in F, gC\K—f is a nonempty set closed in K. Since ßK is compact,

r\{ClßKgnK—f :g=C\sg e F} contains a point, P, which is a /35-
accumulation point of F but not of F'. F' converges in ßK to F't^P. It

follows that F accumulates at the two points P and F', which is impossible.

Therefore, FK=F'.

Corollary. If K is a discrete subspace of S, then K is C*-embedded

in S if and only if the trace on K of every maximal completely regular filter

on S intersecting K is an ultrafilter on K.

Theorem 2. In order that K be C*-embedded in S, it is necessary and

sufficient that every maximal completely regular filter on K be the trace on K

of a maximal completely regular filter on S.

Proof. The condition is sufficient. For suppose F is a maximal com-

pletely regular filter on S intersecting K. FK is completely regular on K,

so there exists a maximal completely regular filter G on 5 such that GK

is finer than FK and is maximal completely regular. Since GK and FK

are compatible, so are Fand G; and since Fand G are maximal, F=G.

Thus, FK is maximal completely regular and the stated result follows

from Theorem 1.

The necessity of the condition follows easily from Theorem 1 and the

lemma.

Theorem 3. If K is C*-embedded in S, the trace on K of every z-ultra-

filter on S intersecting K is a z-ultrafilter on K.

Proof. Suppose J is a z-ultrafilter on S intersecting K. Let F denote

the unique maximal completely regular filter on S coarser than J. FK^JK

and by Theorem 1 is maximal completely regular on K. There is a unique

z-ultrafilter ßonA" finer than FK. Suppose there exist U in JK and VinQ

such that UC\V=0. Then there exists </> e L(K) such that (¡>-1(0) = U

and <f>~1(\)=V. <£ has a continuous extension </>j in L(S). ^[O, l)eF

since each set in F intersects «/»^[O, i2). Thus, the subset i/of ^"'(O fails to

intersect some set in FK and yet JK^FK. This is a contradiction. Thus,

each set in Q intersects each set in JK. Since Q is a z-ultrafilter on K,

Q^JK. Suppose VeQ. There exists </> in L(K) such that 4>~1(0)=V. <f>

has a continuous extension </>! in L(S). Since V intersects every set in JK,

4>1X(0) intersects every set in J and thus belongs to ./. Hence, <f>î1(0)C\K=

VeJK. It follows that Q=JK.
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The converse of the above theorem is false, even if the closure in S of

every zero set in K is a zero set in S. In this regard, Lemma 3 of [2] may be

of interest, where the normal base is the collection of all zero sets.

Example. Let S=[0, 1], K=[0, 1) with the usual topologies. Obvi-

ously, K is not C*-embedded in S. The only z-ultrafilters on S intersecting

K are those fixed at a point of K. If Z is a zero set in K, then Cls Z is a

zero set in S since it is closed and S is metric.

Theorem 4. In order that K be C-embedded in S, it is necessary and

sufficient that every z-ultrafilter on K be the trace of a z-ultrafilter on S.

Proof. The condition is necessary. For by Theorems 1 and 3, ßK^

ßS, and the trace on K of every z-ultrafilter on S intersecting K is a z-

ultrafilter on K. Suppose Fis a z-ultrafilter on K. Let G denote the unique

maximal completely regular filter on 5 coarser than F, so that GK is the

unique maximal completely regular filter on K coarser than F. Let /

denote the unique z-ultrafilter on S finer than G. Suppose some set U

in J does not intersect K. Since K is C-embedded in S, there exists g in

L(5)such that g~\0)^K and g'1^)^ U. For each ein (0, \),g-l[0, e)eG

and hence, J^.G. This is a contradiction. Thus, J intersects K and JK is a

z-ultrafilter on K. Since7_G, JK^.GK. There is only one z-ultrafilter on K

finer than GK. Hence, JK=F.

The condition is sufficient. It will first be shown that K is C*-embedded

in S. It follows easily from the hypothesis that the trace on K of every

z-ultrafilter on 5 intersecting K is a z-ultrafilter on K. Suppose F is a

maximal completely regular filter on K. Let J denote the unique z-ultra-

filter on 5 such that JK=F. Let G denote the unique maximal completely

regular filter on S coarser than J. There exists a maximal completely

regular filter T on K finer than GK and a unique z-ultrafilter Q on S such

that QK^T. From the first lemma, there is only one maximal completely

regular filter on 5 coarser than Fand F^GA-_C7. Thus, G is that unique

filter. Since £>A-_ F, Q^.G. Thus, Q andJare z-ultrafilters on 5 finer than

G. It follows that Q=J and QK=JK and T—F. It follows that F is the
only maximal completely regular filter on K finer than GK. Suppose

F t¿ GK. Then there exists fin F such that for every g in GK, g—f^ 0.

There exist f in Fand <f> e L(K) such that <f>(fi)=l and <j>(K-/)=0.
Thus, if 0<e<l, ¿"1[O,e)n/1=0, but if geGK, ^[O, e)ng9¿0.

There is a z-ultrafilter W on S such that

WK = H = sup{GK, {^[0, e):0 < e < 1}}.

Since H and F are incompatible, WK and F are also. But since WK^.

H^.GK, it follows that W^G and W—J. This is contrary to the incom-

patibility of WK and 7K = F. Therefore, F—GK. By Theorem 2, AT is

C*-embedded in S\
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Suppose K is not C-embedded in S. From Theorem 1.18 of [6], it follows

that there is a zero set Z in S not intersecting K such that if g e C*(S) and

g~1(0)=Z, then for each e>0, g~1[O,e]nK^0. Let F^lg-^O, e)C\

K:0<e, g e C*(S) and g-\0)=Z}. Fx is a base for a z-filter on K. Hence,

there is a z-ultrafilter Fon A" finer than Fv F is the trace on K of some

z-ultrafilter J on 5, by hypothesis. Z ^ J, since ZC\K= 0 , so there exists

F e J such that FnZ= 0 . Since Z and F are zero sets in S, there exists g

in L(5) such that g-\0)=Z and g-i(l)=K. But if 0<e<l, g^[0,e]n

Ke F^JK and thus,^1^, e]C\V^0. This is a contradiction. Therefore,

K is C-embedded in S.

A minof modification of the argument in the last paragraph above

establishes the following.

Theorem 5. If K is C*-embedded in S and every z-ultrafilter on K is

finer than some z-ultrafilter on S, then K is C-embedded in S.

The following summary of Theorems 2 and 4 was suggested by the

referee. It should be noted, however, that while the trace of a completely

regular filter on S on an arbitrary subset K is completely regular on K,

the same is not true of e-filters without some restriction on K.

Theorem 6. K is C- [C*-] embedded in S if and only if every z- [e-]

ultrafilter on K is the trace of a z- [e-] ultrafilter on S.

Theorem 7. If K is countable, then K is C-embedded in S if and only if

K is completely separated from every zero set in S not intersecting K.

Proof. Suppose K is completely separated from every zero set in S

not intersecting K. It follows from 3B.1 of [6] that K is closed and com-

pletely separated from every closed set not intersecting S. Suppose K'x

and K'% are subsets of K completely separated in K. There exists </> in L(K)

such that <f>(Kx)=0 and <f>(K'2)=\. Since K is countable, there exists

0<r<] such that <j>-\r)nK=0. It follows that Kx = Kr\<f>-l[0, r] and

K2=Kncf>~1[r, 1] are completely separated in K, contain K{ and K2

respectively, and K—KXKJK2.

Every closed subset of K is the intersection of K and a zero in S. For

suppose H is a closed subset of K. For each x in K—H, there is a zero

set Zx in 5 containing H but not containing x. f] Zx is the intersection of

countably many zero sets in 5 and thus is a zero set whose intersection

with K is H.

Thus, there exist zero sets Zx and Z2 in S such that ZxnK=Kx

and Z2 CiK=K2. Zx C\Z2 is a zero set not intersecting K and so, by hypoth-

esis, there is a zero set Z in S containing K and not intersecting ZXC\ Z2.

ZC\ZX and Zr\Z2 are mutually exclusive zero sets in 5 containing K'x and
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K2, respectively. Hence, each two sets completely separated in K are com-

pletely separated in S. By Urysohn's extension theorem, K is C*-embedded

in S. It follows from Theorem 1.18 of [6] that K is C-embedded in S.

That the converse is true is obvious.

Thus, statements 1 and 3 of problem 3L.4 of [6] remain equivalent

even if the requirement that D be discrete is omitted.

References

1. P. S. Aleksandrov, Bikompakte Erweiterung topologischer Räume, Mat. Sb. 5

(47) (1939), 403-423. (Russian) MR 1, 318.
2. R. A. Alo and H. L. Shapiro, S'-realcompactifications and normal bases, J. Austral.

Math. Soc. 9 (1969), 489-495. MR 39 #3455.
3. B. Banaschewski, Über Zivei Extremaleigenschaften topologischer Räume, Math.

Nachr. 13 (1955), 141-150. MR 17, 66.
4. N. Bourbaki, Éléments de mathématique. Part. 1. Les structures fondamentales de

l'analyse. Livre III: Topologie générale, Actualités Sei. Indust., no. 1029, Hermann,

Paris, 1947; English transi., Addison-Wesley, Reading, Mass., 1966. MR 9, 261;

MR 34 #5044b.

5. Ky Fan and N. Gottesman, On compactifications of Freudenthal and Wallman,

Nederl. Akad. Wetensch. Proc. Ser. A 55=Indag. Math. 14 (1952), 504-510. MR 14,

669.
6. L. Gillman and M. Jerison, Rings of continuous functions, University Series in

Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994.
7. O. Njästad, A note on compactification by bounding systems, J. London Math. Soc.

40 (1965), 526-532. MR 33 #1832.
8. R. M. Stephenson, Jr., Product spaces for which the Stone-Weierstrass theorem

holds, Proc. Amer. Math. Soc. 21 (1969), 284-288. MR 40 #3499.
9. F. J. Wagner, Notes on compactification. I, II, Nederl. Akad. Wetensch. Proc.

Ser. A 60=Indag. Math. 19 (1957), 171-176, 177-181. MR 19, 436.

Department of Mathematics, University of Oklahoma, Norman, Oklahoma

73069


