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TOPOLOGICAL PROPERTIES OF THE
EFFICIENT POINT SET

BEZALEL PELEG

Abstract. Let Y be a closed and convex subset of a Euclidean

space. We prove that the set of efficient points of Y, M(Y), is

contractible. Furthermore, if M(Y) is closed (compact) then it is

a retract of a convex closed (compact) set. Our proof relies on the

Arrow-Barankin-BIackwell Theorem. A new proof is supplied for

that theorem.

1. Introduction. The study of efficient points of convex sets is ex-

pounded by many writers (see, e.g., [3], [2, pp. 306-310], [6, §12.3]). In

particular, topological properties of the efficient point set are investigated

in [3, pp. 73-78]. This paper is a further contribution on this topic: In

§4 we prove that the set of efficient points M( Y) of a closed and convex

subset y of a Euclidean space is contractible. Furthermore, if M(Y) is

closed (compact) then it is a retract of a convex closed (compact) set.

Our proofs make use of the Arrow-Barankin-BIackwell Theorem [1,

Theorem 1]. This theorem is generalized in infinite-dimensional spaces in

[9], [7], [8], [5], and [4]. In §3 we offer a new proof of the Arrow-

Barankin-BIackwell Theorem. Our proof is advantageous over the original

one in two respects: It is a "constructive" proof, unlike that of Arrow,

Barankin, and Blackwell. Furthermore, it is easier to generalize to infinite-

dimensional spaces (see [7]).

I am indebted to M. Perles and M. Yaari for many helpful discussions.

2. Preliminaries. Let En be the «-dimensional Euclidean space. If

x, y e E", then we write x~y if xi'^.yi for i'= 1, • • • , n. x>y if x=y and

xjty. x»j> if xt>yi for i=l, ■ ■ ■ , n. We denote by E+ the nonnegative

cone of £"', i.e., £*={xx e E" and x=ï0}. The scalar product of two mem-

bers x and y of E" is denoted by xy= 2"_i x¿_y¿. The norm of a member

x of En is denoted by ||x||=(x-x)1/8. uu), i=l, ■ ■ ■ , n, will denote the

;th unit vector of E".

3. An alternative proof of the Arrow-Barankin-BIackwell Theorem.    Let

Y be subset of En. A point e e F is an efficient point of F if there exists no
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y e 7 such that y>e. re Y is a regular efficient point of Y if there exists a

vector p e En, />»0, such that p-r^p-y for all y e Y. Clearly, a regular

efficient point of Y is an efficient point of Y. Let

(3.1) MiY) = {e | e is an efficient point of Y}.

Theorem 3.1 (Arrow, Barankin, and Blackwell [1]). Let Y be a

closed and convex subset of E". The regular efficient points of Y are dense in

MiY).

Proof. Let e e Mi Y) and let Y* = {y\ye Y and \\y-e\\ = l}.lf r* is a.

regular efficient point of Y* and \\r* —e\\ <1 then r* is a regular efficient

point of Y. To see this let /?»0 satisfy p-r*^.p-y* for all y* e Y*. Let

y e Y. For r>0 sufficiently small, /y+(l— t)r* e Y*. Hence, p-r* —

t-p-y+il — t)p-r*. Thus, p-r*^.p-y. Thus, it is sufficient to prove that

e is the limit of a sequence of regular efficient points of Y*. But Y* is

compact. Hence, we may assume that Y is compact. We may assume

further that Y<=E". Let C=max{||.y|| \ye Y}. For each k,k=l,2,--- ,

let

(3.2) Ym = {y | y e Y and yt ^ e{ - 1/fe, i = 1, ■ ■ • , »},

(3.3) vkix) = min(x, - et + 1/fc, 1 <; i <; ai),       xe En,

n

(3.4) wkix) = 2 *,/»(* + DC,       x e £»,

and

(3.5) ut(x) = yfc(x) + wk(x).

Let r'*' be a point where t/j. attains its maximum in Y{k). uk is concave;

hence, the set

(3.6) Z = {z | z e E" and Mjt(z) > Mjfc(r'*>)}

is convex. Zn y(i, = 0. Hence, there exists a p e En such that

(3.7) p-z^p-y   for all zeZ and y eY{k).

By (3.3), (3.4), and (3.5), uk is increasing, i.e., x>y implies that ukix)>

ukiy). Hence, it follows from (3.6) and (3.7) that/?»0. Furthermore,

(3.8) p-r{k)^p-y   for all y e Y{k).

Since llk=ukie)=ukir{k)), it follows from (3.4) that

(3.9) rf > e{ - \¡k,       i = I, ■ ■ ■ , n.
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It follows from (3.8) and (3.9) that

(3.10) p-rM^p-y   for all y e Y.

Thus, r{k) is a regular efficient point of Y. Since r(k) e Y{k), k = l, 2, • ■ • ,

and e is efficient, e=limfc^00 rlk).

4. A proof that the set of efficient points is contractible.    Let F be a

closed and convex subset of En and let M(Y)j¿0 (see (3.1)).

Lemma 4.1. There exist a vector /*»0 and a real number v such that

p-y^vfor ally e Y.

Proof.    By Theorem 3.1 there exists a regular efficient point of Y.

Corollary 4.2.   For each x e En the set {y\y e Y andy=x} is compact.

Lemma 4.3. Let F* = {x| there exists y e Y such that y=x}. Then Y*

is convex and closed and M( Y) = M( Y*).

Proof. It is clear that Y* is convex and that M( Y)=M(Y*). To see

that Y* is closed let x=\imk^ao xM, x{k) e Y*, k=\. 2. • • • . There exist

y(k) 6 y _y<*)*>x'*), k=l, 2, • ■ •. By Corollary 4.2 the sequence (y{k)) is

bounded. Hence, we may assume that there exists a vector y such that

y=\imk^œy{k). Clearly, y e yandj^x.

By Lemma 4.3 we may assume henceforth that Y= Y*.

Corollary 4.4.    There exist points a, b e Y such that /*»a.

For ye Y we define

(4.1) G(y) = {x\xeYandx=y).

G(y) is convex and compact. Also, G is an upper semicontinuous function ofy.

Lemma 4.5. Let y e Y. If there exists a z e Y such that z»>' then G is

lower semicontinuous at y.

Proof.    Let v^im^«, yik) and let x £ G(y). Let 1 >f >0.

x(/)-tt + (l-0x»j-.

Hence, there exists a natural number k(t) such that x(t) e G(y{k)) for k^.

k(t). Since lim,._.ax(t)=x, the lemma follows.

We recall that a topological space is contractible if its identity map is

homotopic to a constant.

Theorem 4.6.    M( Y) is contractible.

Proof. Let p and v be as in Lemma 4.1. Let iv=mmläiS„/><. For

ye Y let f(y)=y+(v—p-y) 2?„i M(i)/»'. / is a continuous function of y.
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Furthermore,

(4.2) f(y) = x   for all xeGiy)   (see (4.1)).

For y e Y let giy) e Giy) be the point defined by \\giy)-fiy)\\ Û ll*-/ÜOII
for all x e Giy). giy) is well defined. By (4.2), giy) e Mi Y). Now let a e Y

be a point for which there exists abe 7 such that ¿>»a (see Corollary 4.4).

For eeM(Y) and O^/^l let hie, t)=gül-t)e+ta). hie,0)=e and

hie, l)=g(a) for all e e Mi Y). Furthermore, h is a continuous function of

both e and t. For let i=limifc^oc, f<w and e=limi_00 elk). If t=0 then

lim(l - tM)eM + tik)a = e.

(4.3) h(eM, t(k)) ^ (1 - r<*y*> + t{k)a.

By Corollary 4.2 the sequence (/i(e<fc), r'**)) is bounded. Hence, it follows

from (4.3) and from e e Mi Y) that lim^«, /;(e(t), ?<*>)=<?. If r>0 then

(1 - t)e + tb » (1 - t)e + ta = lim(l - rttyw + i(*>a.
k-* oo

Hence, by Lemma 4.5, G is lower semicontinuous at (1 — t)e+ta. There-

fore, g is continuous at (1 — t)e+ta=y. For assume, on the contrary, that

(4.4) y = limyik)   and    lim giy(k)) = z * giy).
k-*x. fc-*oo

Then

(4.5) || gOO -fiy)|| <||z-/O0||.

Furthermore, there exist xM e Giyik)), k=l, 2, • • • . such that

(4.6) hW*' - g(y).

It follows from (4.4,)-(4.6) that there exists a k such that

u-v'*' -/Cv(s))ll <\\g(ym)-f(ym)\\,

which is impossible. The continuity of /; at ie, t) follows now from the

continuity of £ at (1— t)e+ta.

We recall that a subset A of a topological space T is a retract of J if

there exists a continuous function r: T^-A such that r(ö)s=a for all ae A.

Theorem 4.7.    If MiY) is closed then it is a retract of a closed and convex

set.

Proof.    For y e Y let diy, Mi Y)) be the distance between y and M( Y).

Let

(4.7) tiy) = diy, Mi y))/(l + diy, Mi Y))).
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Then t(y) is a continuous function of y and y e M(Y) if and only if t(y)=0.

Using the notation of the proof of Theorem 4.6 we define, for y e Y,

h(y) - g((l - t(y))y + t(y)a).

Then h(y) e M( Y) and h(e)=e for e e M( Y). Furthermore, it follows from

the definition of t(y) and Lemma 4.5 that h is continuous. Hence, /; is a

retraction of Y on M( Y).

Theorem 4.8. If M(Y) is compact then it is a retract of a compact and

convex set.

Proof. 'Choose a e En for which there exists e e M( Y) such that

<?»a. Let yx be the convex hull of M( Y)<U{a}. Then Fx is convex and com-

pact and M(Yl)=M(Y). Let q e E" satisfy q^x for all x e Yv Forye Fx

let g(y) e G(y)={x\x^y and x e y} be defined by

k(y)-q\\ £\\x-q\\    for all x e G(y).

Let further t(y) be defined by (4.7). Define now, for v e Ylt

Hy) = *((1 - t(y))y + t(y)a).

Then h is a retraction of Y1 on M( Y).

Remark 4.9. If Y is polyhedral or strictly convex then M( Y) is closed.

However, Y may be compact without M( Y) being closed.

5. Concluding remarks. Let F be a closed and convex subset of a

Euclidean space. Consider y as a technology given in the flow version (see

[6, §12]). By Theorem 4.6, M(Y) is contractible; hence, in particular, it is

arcwise connected. Thus, it is possible to move from one efficient process

to another via M( Y) in a continuous manner. This result may be useful

for economic planning.

If y is compact and polyhedral then, by Theorem 4.8, M( Y) is a retract

of a convex compact set. Therefore, every continuous function f:M(Y)->-

M( Y) has a fixed point. This last fact may prove useful in game theory and

mathematical economics investigations.
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