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NODAL  ALGEBRAS  DEFINED  BY  SKEW-
SYMMETRIC  BILINEAR  FORMS

JERRY  GOLDMAN1

Abstract. This paper studies nodal algebras defined by skew-

symmetric bilinear forms, a subclass of the class of Kokoris

algebras. The ideals of such algebras are classified and a character-

ization of the automorphisms of these algebras is given.

1. Introduction. The purposes of this paper are to specify the ideal

structure and to furnish a characterization of the automorphisms of nodal

algebras defined by skew-symmetric bilinear forms. Each of these algebras

is a member of the following class, Jf, of Kokoris algebras.

Let the commutative associative truncated polynomial algebra Bnp(F)

be defined by

Bn V(F) = -^-±-^-J,
(X*,---,Xl)

for Fa field of characteristic p> 2. An algebra A is in Jf if and only if

there exist/», n, and i7 such that A+=BniJ)(F) where the product off, geA

is defined in terms of the (dot) product of A+ as

(1) fg=f-8+1-î ^•!i-[x<,x,.]>

where at least one commutator [x¡, xj]=xixj—xjxi is nonsingular, and

where xt is the coset Xi+(X{', ■ ■ ■ , X'¡',). Then necessarily, n^.2 and A is a

nodal noncommutative Jordan algebra [7].

Let A be an algebra in Jf" of dimension p" and let N be the radical of

Br,.p(F). As in R. D. Schäfer [10], we say that A is defined by the skew-

symmetric bilinear form </> if and only if there are generators xu • • •, x„ of

A such that <p acting on the «-dimensional F-vector space NjN ■ NaaFxi +

■••+Fxn satisfies </>(x¿, xj)\=\[xl, x¡] e F\ for \^i,j^n. In [10],

Schäfer represented certain simple Lie algebras of characteristic/» as ideals

in the derivation algebras of suitable algebras defined by nondegenerate
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skew-symmetric bilinear forms. In [8], R. H. Oehmke makes essential use

of Schafer's determination of the derivation algebra of an algebra defined

by a skew-symmetric bilinear form to find the derivation algebras of

certain simple, Lie-admissible members of Jf.

Suppose A with n generators is defined by a skew-symmetric bilinear

form (f> of rank 2r (2^2r^n). The canonical form of the matrix of <p is

well known [5, pp. 159ff.], and a change of basis in the vector space Fxx+

-VFxn gives

Uxu xi+r) = 1 = -0(x,+r, *,),       i = 1, • • • , r ;

<p(x¡, Xj) — 0, otherwise.

A is simple if and only if n=2r ([7], [10]). We will extend the methods of

[3] and [4] to prove the following theorem.

Theorem 1. Let A be a p"-dimensional algebra defined by a skew-sym-

metric bilinear form of rank 2r. There exists a set of generators x,, • • • , xn

for A such that any nonzero ideal of A is either one of the ideals

xll'+i ' • • • ' x"n  ' -4 (Q=e,=p— 1 for 2r+l^j^n)or a sum of such ideals.

2. Preliminary lemmas. We need the following lemma due to A. A.

Albert.

Lemma 1 [1, p. 340]. Let A=Fl+F[xL,- ■ ■ ,xn]beinJf and let I be a

nonzero ideal of A. Then the maximal degree monomial xf-1 • x2_1 •...

•xT'el.

Lemma 2. Let A be a pn-dimensional algebra defined by a skew-symmetric

bilinear form <j> of rank 2r. Let x1,---,xn be generators for A such that <f>

satisfies (2). Then each of the subspaces x'g+j •. . . • x'p ■ A for 0^ekz%

p— 1 (2r+1 ^k^n) is an ideal of A.

Proof. Each of these subspaces is an ideal of A+. It suffices to show

that each subspace is also an ideal of A~. Let a and g be arbitrary elements

of A. Since fg=f- g+iif, g], (1) and the fact that A is defined by </> imply

that [/, g] = 2 H, a (dfldxj ■ {dgldx,) ■ <¡>(xu x,)\, for any/e A.
Recall that for each g e A the map D(g):ft-*[f g] is a derivation on A+.

Thus, if we sQtf=xr2f^ ■ . . . ■ xen",

[f-a,g] = (l-a)D(g)=f[a,g] + a-[f,g]

sa-[/,g]   (mod/- A)

= la
y ÈL.1^_ y M.. ds
=13x,:   dxHr    i=r+1dxt  dxf_

= 0   (mod/- A) because /is independent of x^

Therefore,/- A is an ideal of A~ and Lemma 2 is proved.

(mod/■ A) by (2)
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There are pn~2f ideals listed in Lemma 2, including A itself. Sums of

these ideals are, of course, also ideals of A. The remainder of our work in-

volves showing every ideal of A can be so described.

3. The case n—2r=\. In this section A=F\+F[xi, • ■ • , x2rfl] will be

an algebra defined by a skew-symmetric bilinear form <p of rank 2r with

generators chosen so as to satisfy (2). Our object is to prove that a complete

list of the nonzero ideals of A is given by A, x2r+1 • A, x2r+1 • A, • • • ,

xl7+\ • A. The method of proof is basically that of [4], so we will be brief.

Suppose /is a nonzero ideal of A. Lemma 1 implies that m=x{~1 • . . .

' xlr+i el. lis an ideal of A~, consequently,

2r<l-*['p -  l)\]-rmD»~Hx1+r) ■ ■ ■ 0*-H*2r) - *£? • - - . " xSÍ

is in /. A similar iterated application of the derivations D(xx), • • • , D(xr)

to this last monomial yields x2^ e I. Thus, x2~^ ■ Aç.I; that is, x%~+i ■ A

is the unique minimal ideal of A which is contained in every nonzero ideal

of A.

Denote /4/xgr+\ ■ A by A(p— 1). If ■n\A^-A(p— 1) is the natural homo-

morphism of A onto A(p— 1), then A(p— 1) is a nodal algebra [9] which

inherits the basic multiplicative structure of A and, thus, is an algebra

defined by a skew-symmetric bilinear form. The monic maximal degree

monomial of A(p—1) is (x^)"-1 • . . . ■ (x^tt)^1 ■ (xir+.1ir)p~9 where we

again use dots to indicate product in A(p—l)+. Using the same reasoning

we applied to A, we see that (x2r+1n)p-2 ■ A(p—\) is the unique minimal

ideal of A(p— 1) contained in every ideal of A(p— 1). We now indulge in the

notational luxury of dropping the symbol 'V here and refer to x\~lx

■ A(p—l) as the unique minimal ideal of A(p— 1). The possible confusion

introduced by this notational convention, which we adopt throughout, is

small and is outweighed by its advantages in keeping the notation manage-

able.

We now recursively define a sequence of algebras defined by a skew-

symmetric bilinear form: A(p— 1), • ■ ■ , A(\). Having defined A(p — i),

with unique minimal ideal x^r1 ■ A(p—i), we proceed to define

A(p - i -1) = A(p - o/x^ir1 • mp - o.

The unique minimal ideal of A(p—i— 1) is x2r^72 • A(p—i— 1).

Since we reduce the maximum exponent of x2r+1 by one with each step down

this sequence of nodal algebras, it is clear that AiD^Fl+Flxx, • • ■ , x2r],

an algebra defined by a skew-symmetric bilinear form of rank 2r.

Thus, A(\) is simple, but A(l)=A(2)/x2r+l ■ A(2), which, given the in-

clusion property of the denominator ideal, implies that x2r+1 • A(2) is the

only proper ideal of A(2). Similarly, x2r+] • .4(3) and x|H, ■ ,4(3) are the
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only proper ideals of /I(3), and so on up the sequence back to A and

the conclusion that x2r4 x ■ A, ■ • • , x2^ ■ A are the only proper ideals

of A. The lattice of ideals of A is linearly ordered, so we form no new

ideals by taking sums of these.

4. The case n — 2r=2. In this section A—F\ +F[xl, • • •, x2r+2] will be

an algebra defined by a skew-symmetric bilinear form </> of rank 2r with

generators chosen so as to satisfy (2). It is worthwhile to discuss this case

separately for the reason that although we repeat the above process of

taking quotients by minimal ideals at various stages, the allowable set of

minimal ideals no longer contains just one member at each stage. Dis-

cussion of this case will reveal all the features of the general case and pro-

vide an insight into it unencumbered by too much notation.

Just as in §3, one can show that x^ • x2~^2 ■ A is the unique minimal

ideal of A contained in any nonzero ideal of A. Denote /4/x£+i • x2r^2 • A by

A(p— l,p—\). One has the natural homomorphism of A onto A(p—l,p—l).

Thus, A(p—\,p—\) is an algebra defined by a skew-symmetric bi-

linear form which has two monic monomials of maximal degree: namely,
vv-\ . . „»-1 .  vp-2   .  v-P-l     anA    rJ>-i . . yP-i .  Yv-l   . vJ>-2      The
Xx ...    x2r       x2r+1     x2r+2    dim    *i        ...    x2r       x2r+l    x2r+2.    ine

method of proof of Lemma 1 can be adapted here, to permit the obser-

vation that at least one of these monomials is contained in any nonzero

ideal of A{p—\,p—\). Thus, using the method of §3, we find that x^+i

• x£+2 A{p— 1 ,p— 1) and x^ ■ jcj£¡?2 • A(p— 1,p— 1) are minimal ideals

of A(p— I, p— 1) at least one of which is contained in any nonzero ideal of

A(p-\,p-\).

lfA(p—2,p—l)denotesA(p-\,p-\)lx2rJ^1 ■ x2r+2 • A(p—l,p—\)and

A{p—\,p — 2) denotes A(p — 1,p — 1 J/x^1, • x|r~22 • A{p—\,p—\), then

there are two maps out of A(p— \,p—l) to consider: the natural homo-

morphism of A(p— l,p—l) onto A(p—2,p-l) and the natural homo-

morphism of A(p— \,p— 1) onto A(p—l,p—2). If one were to continue

this process of forming new algebras defined by bilinear forms, taking each

of the possible quotients by minimal ideals and reducing the maximal

exponent ofeitherx2r+1orx2r+2by one at each level, then one would obtain

a tree of homomorphisms. More specifically, assuming that the algebra

A(p—i,p—j) has been defined and has at least one of the minimal ideals

XsV+r1 ■ x%7+2 ■ A(p-i,p-j) or x§£, ■ xf^ ■ A(p-i,p-j) contained

in each nonzero ideal, we define

A(p - i, p - j) _
A(p- i- i,p-;) = ^n

A(p- i, p - j - 1) =

ttl-*Zh-Mp-i.p-J)
and

A(p - i,p - j)

x£í, • x^1 • A(p - i, p - j)
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The natural epimorphisms of A(p—i,p—j)->-A(p—i—l,p—j) and

A(p — i,p—j)^A(p — i, p—j— 1) are branches leading to two new nodes on

the next level of the tree. As one continues to follow branches down to new

levels, the components a, ß of A(<x, ß) decrease and the nodes at the end of

each branch will for the first time eventually assume either the form

A(0, ß) or A(ct, 0). Nodes of either of these forms will terminate our con-

struction of the tree from their particular branches, since the case n — 2r= 1

above guarantees that the only nonzero ideals of A(0, ß) are x2r+2 ■ ,4(0, ß)

for O^e^ß—1 and that the only nonzero ideals of A(<x, 0) are x|r+1

• A(ol, 0) for O^e^a—1. Of course, a node of the form ,4(0, 0) is simple

(n=2r here). Once one knows a complete list of ideals of some terminal

node of the tree, one can pull this list back (take inverse images) and make

use of the inclusion properties of the minimal denominator ideals to

determine a complete list of the ideals of the parent algebras.

One continues back up the tree to emerge with a complete list of ideals

of A. It is clear from the construction of the homomorphism tree that the

nonzero ideals of A are precisely

rf2r+l   .   yfür + 2   .    A C\<P P„     „< n_ 1

and sums of these ideals. For the construction process reduced exponents

of either x2r+1 or x2r+2 by one for each level down until a terminal level

algebra whose ideals were known was reached. The taking of inverse

images and addition of the denominator ideals just increases such ex-

ponents by one, enlarging the list of ideals at each step.

5. The general case. Let A=F\ +F[xx, • • •, xJ be an algebra defined

by a skew-symmetric bilinear form <p of rank 2r with generators chosen so

as to satisfy (2). Theorem 1 is proved by induction on n—2r. From the

preceding, the truth of the theorem is clear for n—2r=0, 1, and 2. As

induction hypothesis, assume the truth of the theorem for all algebras

defined by skew-symmetric bilinear forms with number of generators

minus rank less than n—2r.

As in previous sections one can prove that x2r^\ • . . . ■ x"_1 ■ A is the

unique minimal ideal of A contained in every nonzero ideal of A. Set

A(p— 1, • • • ,/»—1) (n — 2r components, each = p—\) equal to Ajxl^

■ . . . • xn     -A.

Just as in §4, we can conclude that all

*2r+l ' • • • ' Xk_l ■ Xk     ■ Xj.,.,    . . . • xn     ■ A(p — 1, • • • , p — 1),

2r + 1 ^ k <: n,

are minimal ideals of A(p—\, ■ ■ ■ ,p—\) at least one of which is con-

tained in every nonzero ideal of A(p—\, ■ ■ ■ ,p—\). We now can con-

struct «—2r natural homomorphisms out of A(p— 1, • • • ,p—\), each one
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having one of the n — 2r minimal ideals above as kernel. This starts the

construction of a tree of homomorphisms in a menrer similar to that of

§4-
Again leaning upon the analysis in §4, it is clear that we could define an

(n—2r)-fold sequence of algebras A(i\, • • • , in_2r) (O^i^p—l) defined

by skew-symmetric bilinear forms. Eventually, in proceeding down

branches of a homomorphism tree having these algebras as nodes, some

component i¡ in A(i1, • • • , i„_27.) will be zero. In this cass, A(iu • • • , i„_2r)

is an algebra defined by a bilinear form of rank ?,;■ with at most the

generators xlt - - , x2r, • ■ • , x2r+j_1, x2r+m, • • • , xn. By the induction

hypothesis we know the ideals of A(ix, • • • , in~2r). We then work our way

up the branches of the tree in the manner described previously. We have

seen that the method of construction of the tree guarantees a complete

list of ideals of A is provided in the theorem. This p; oves the theorem.

6. Remark. Theorem 1 and its method of proof actually apply to a

larger class of nodal algebras in JT than those defined by skew-symmetric

bilinear forms. A careful analysis of the proof shows that any choice of the

products [Xj,x3] which yield Lemma 2 and the second paragraph of §5

(thus, the initial parts of §§3 and 4) will produce the same theorem. For

example, if we define:

[x,, xi+T] = any invertible element of A+,        1 < i :gj r,

[x2, x,_r] = any invertible element of A+,       r + 1 ^ i* ¿ 2r,

[*2h j. **] = f2H i • x2r+2 • • • • * x„ • a¡,       ajeA,\<:jz%n-2r,

k y¿ 2r +j, 2r + 1 ^ k ^ «,

and all other [x,, x3]=0, then every other step in this proof remains valid.

7. Automorphisms. Suppose A e Jf. It is clear from the relation fg=

/' g+\[fi g] that We Aul(A), the group of automorphisms of A if and

only if We Aut(A+)nAut(A~). Moreover, the automorphisms of A+ are

known modulo N ■ N from the following lemma due to N. Jacobson.

Lemma 3 [6, pp. 116-117].   If A eJf with A+=BnJF), then

Aü{(A+)¡T^ GL(n,F),

where   T={We Aüt(A+)\xíW=xl (mod A-A)}   and  GL(n,F)  is   the

general linear group of degree n over F.
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We then see from Lemma 3 that We Hom(^+, A+) is in Aut(,4+) if and

only if

71

(3)       x¡W = 2 œaXj + Wi,       w{ = 0(N ■ N),       i = 1, •• •, n,
j=i

for A+=Bn,v(F) and (tou) e GL(«, F).

The multiplication defined in (1) yields the fact that W e Aut(,4+) is also

in Aut(^) if and only if [x¿, xj]W=[xiW, xAV\ for all i,j since it follows

readily that d(fW)ld(xiW)=(dfldxi)W.
Now let A be an algebra defined by a skew-symmetric bilinear form <f> of

rank 2r, with generators xlt • • •, xn satisfying (2). If We Aut(A), then

setting r/>¿i=</>(x¿, Xj) we see from (3) that

(4)

çM = 2-[xi,xj]W = l[xiW,xjW]

= \ Z a>ikwjm[xk, xj + \ Z (»ik[xk, w¡]
Je.m k

+ I Z COjJWi, xj + |[w¿, Wjl

To rewrite (4) we can make use of the observation:

i     v dvVj   dwj
i[w., Wj] = Zzr-

,r=19xs   dxt

■ 4>..A

A dwi    dwj       ^  dw{   dw¡
~   ¿-I   3..        3.. ¿->

s=l "Xs    VXs+r      s—r+l OXs    OXs_r

■^ idwi    dwj        dw¿    dw¡\

s=1 \dxs   dxs+r     dxs+r  dxsJ

= y\JL{       dwi \ _    d   (w    dw'\
s=1 Ldxs\ l   dxs+J      dxs+r\ '   dxj.

Note that each component of the above sum is antisymmetric in i and/

Similar calculations imply that

1 v V        ^wi        v dw¡
- Z °>iklx*> wi] = Z (°ik ~—  - Z 0)ik ~

i—i <7X2 k k+r      k=r+l        "xk_T

V /       dw¡ dw'\
Z   (°a-- «i.Jfc+r T~  •
,=1 V     dxk+r dxk!
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Thus, (4) becomes

<p,\ — 2, o>ik(f>kmo>jml
k.mr-l

(5) v r 9   / dw} \
+ 2 ;r~ ^j.fc+rw,- - (»i.t+rWi + Wi ■ -—

* i Löx*. \ dxk+r!

d   l dwAi
+ Z- I (»ik^i ~ (Oikwi - % ■ -^     •

dxk+r \ dxkl J

We can equate components in Fl and N separately in (5) to obtain the

proof of the next result.

Theorem 2. Let A be a p"-dimensional algebra defined by a skew-

symmetric bilinear form <j> of rank 2r with generators xlt • • •, xn chosen so

as to satisfy (2). If We Hom(>l, A) with the action of Wupon the generators

given by (3), then We Aut(^) if and only if

O = QHtfQ*    and   J = 0   for all 1 < i < j ^ n,
k-1   Sxk

where

<D = (<£,,.),       £1 = (œ,,) e GL(«, F),

and

t'kdj) = <";.*, r»', -<Oi.k+rWj + "'t ' 5—-       (1 ^ fc ̂  0,

OH'
»*('» /) = «>i.J-rwJ - (,,;.í:-r»'¿ - wi - T"^ ^ +  l = k = 2r)-

dxk_r

For d=(u1, • • • , vn) eAxAx- • -X.A (n-times), we can define di-

vergence and write div(p)=2£-i (di'/d.v,) ([2], [10]). When </> is a non-

degenerate form, we can restate the conditions in Theorem 2.

C0R011 ARY. In the notation of Theorem 2,ifn=2r,then WeHom(A,A)

is in AuiiA) if and only if LI is in the symplectic group of the form </> and

di\(v(i,j)) = 0, where v(i,j) = {v1(i,j), • • • , vn(i,j))for all 1 <;/<;'<;«.
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