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A GENERALIZATION OF PEANO'S EXISTENCE THEOREM
AND FLOW INVARIANCE

MICHAEL G.  CRANDALL1

Abstract. Let F£ R" be closed and A:F->-R" be continuous.

Assuming that for y e F the distance from y+hAy to F is o(h) as

AJO, it is shown that for each x 6 F the Cauchy problem u'=Au,

u(0)=x, has a solution u: [0, Tx]->-Fon. some interval {0, Tx], Tx>0.

Throughout this note F is a subset of Rm, A : D(A)->Rm is a continuous

function with domain D(A), and Fç D(A)ç Rm. Br(x) is the closed ball of

radius r and center x in Rm. We will always assume that Fis locally closed,

i.e. for each xeF there is an r>0 such that FnBr(x) is closed in Rm.

The euclidean norm of y e R"1 is denoted by |j| and \y, F\ stands for the

distance from y to F. Our main result concerns the Cauchy problem

(1) u = Au,       u(0) = x.

By a solution of (1) on an interval [0, a], a>0, we mean a continuously

differentiable function u : [0, a]-+D(A) such that m(0)=x and u'(t)=

Au(t) for 0^/^a.

Theorem 1.   Let

(Ax) lim h~l \z + hAz, F\ = 0   for z e F.

Then for each x e F there is a positive number T and a solution u of (I) on

[0, T] such that u(t) e F for 0<r< T.

This theorem is related to results of Bony [1] and Brezis [2]. We say

that F is forward invariant for (1) if whenever u is a solution of (1) on

[0, a], a>0, and xeF, then u(t)eF for O—f^a. If D(A) contains a

neighborhood of F and F is forward invariant for (1), Theorem 1 is an

obvious consequence of the Peano existence theorem. Brezis established

that F is forward invariant for (1) if F is closed, (Aj) holds and A is

Lipschitz continuous. Bony replaced (Ax) with a subtler condition. Let

xe F and y e Rm. If the interior of B^x\(y) does not meet F we say that

j—x is a normal to F at x in the sense of Bony. Let v(x) be the set of such
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normals for x g F. Bony showed that if F is closed, A is Lipschitz con-

tinuous and

(A2) (z, Ax) ^ 0   for x e F and z e v(x),

then F is forward invariant for (1). Here ( , ) denotes the euclidean

inner-product. Theorem 1 goes beyond such considerations in that it

asserts the existence of solutions u with values in F in a generality which

allows F to fail to be forward invariant for (1). Moreover, if Fis closed

and solutions of (1) for x e Fare locally (forward) unique, then it follows

at once from Theorem 1 that F is forward invariant for (1). This result

generalizes the results of Brezis and Bony. Moreover, it settles a problem

mentioned in Redheffer [5]. The results of Brezis and Bony are extended

and simplified in [5].

Our proof is a simple adaptation of the method of polygonal approxima-

tion. The success of the argument rests on Lemma 1 which shows that if

(Aj) holds, then it holds uniformly on compact subsets of F. It is obvious

that (A1)=>(A2). Moreover, it is clear that if the conclusion of Theorem 1

holds, then (Ax) holds (see, e.g., [2]). Lemma 1 actually asserts that if (A2)

holds, then (Aj) holds uniformly on compact subsets of F, which does

not seem obvious. As regards Theorem 1, see §5 of [4].

In [4] R. H. Martin carries out related investigations in a more complex

infinite dimensional setting under assumptions which guarantee unique-

ness of solutions of (1).

Proof of Theorem 1. Let x e F and FT=Br(x)nF. Choose r>0 so

that F2t is closed and set

(2) M = max(max{|^x| :x e F2r}, 1),        T = rßM.

For each integer «>0, set x„ 0=x and inductively choose xni e F,

1^/'<J7, satisfying

(3) 2 |xB>i + (T¡n)AxnA, F\ ^ |xM+1 - (xB>i + (T¡ri)Axnii)\.

The existence of {xnJLo >s obvious once we show that if xni is defined

for 0<i<k<n and xn¿ e Fr for 0<;/</c, then xn¿ e Fr. If z e F2r, then

\z + (T/n)Az, F\ = \(z + (T/n)Az) - z\ < (T\n)M.

It then follows from (3) that

(4) \xn,i+1 - xn4\ ^ (3T/n)M

forO^/^rC-1. Hence

\xn.k -x\ú2 I*».« - xn.i\ = (MT ¡n)M <: 3MT ^ r.
z=0
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To continue, define un: [0, T]->-Rn by

(5) un(t) = xn¡i + (t- iTln)(nlT)(xnyi+x - xn>f)

for iTjn^t^(i+\)Tjn, O^i^n— 1. Each un is a continuous piecewise

linear mapping, un(0)=x, and by (4),

(6) K(t)| ^ 3M

for 0^/^r and í £ {iTjn:i=0, 1, ■ ■ • , n}. It follows at once from the

Arzela-Ascoli theorem that {un}%=x has a subsequence {«„(^KLi which

converges uniformly on [0, 77] to a limit u(t). Clearly \un(t), F\^2>MTjn

for te[0,T], so |w(r), F|=0. Since K(?)-x|^3Mr<r for O^t^T,

u(t)eBr(x). Thus \u(t),F\ = Kr),F2r|. Since F2r is closed u(t)eF. Let

Dr denote the right derivative. Since DTun(t)=(njT)(xn i+x—xnt) for

iTjn<t<(i+\)Tjn it will follow easily that lim*^ \DTunm(t)-Au(t)\=0

holds uniformly in t, 0^t<T, if we show

(7) lim    max  |(n/r)(xn¿+1 - xn4) - AxnA\ = 0.
n-*oo  OSíájn—1

Thus the proof that u(t) is a solution of (1) is completed by verifying (7),

which is established with the aid of:

Lemma 1. Let A satisfy (A2). Then (Ax) holds uniformly on every

compact subset of F.

Proof. Let CsF be compact. Since F is locally closed, C has a

compact neighborhood K in R" such that KnF=Cx is compact. There is

an h0>0 such that \x+hAx, F\ = \x+hAx, Cx\ forxeC and 0<h^h0.

We assume O^s, T^h0 everywhere below. Let xeC and j7=x+tvSIx.

Choose xr e Cx such that \yr, F| = |_yr—xr|. Set

(8) y(r) = sup{|/lz — Ay\:z,yeCx and \z — y\ ^ r)

and

(9) /(t) = \yT, F\2.

Let 0^i<T^/i0. Then, using (8) and (9),

f(r) -f(s) = \y, - xT\2 - \ys - xs\2 ^ \yT - xs\2 - \y, - xs\2

= \yr - ys\2 + 2(yT - ys,ys - xs)

= (t - s)2 \Ax\2 + 2(r - s)(Axs,ys - xs)

(10) + 2(r - s)(Ax - Axs, ys - xs)

< (t - s)2 \Ax\2 + 2(t - 5)(^xs, js - xs)

+ 2(t - i)y(|x - xs|)V(/(s)).
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Next observe that ys—xse v(xs) and

I* - xs\ g |x - y,\ + \ys - xs\ ^ 2 |x - ys\ = 2s \Ax\.

Hence (by (A2)) (Axs,ys-xs)<0 and y(|x-xs|)^y(2j|^x|). Using

these estimates in (10), dividing by (r—s) and letting sfr yields

lim sup /(t)~/(5) < 2y(2r |Ax|)V(/(r)).
sir T — S

It follows at once that

(11) V(/(Ä)) = |x + hAx, F\ < ÍV(Ls) ds
Jo

where 7_=2 max{|A4x|:xe Ca}. Since /I is uniformly continuous on Cx,

limr|Oy(r)=0. Thus the right-hand side of (11) is o(h) as h[0, and the

proof is complete.

We finish the proof of Theorem 1. Set r¡(T)=süp{\y+rAy, F\:y eFT).

Since (A1)=>(A2), Lemma 1 implies that limrj0 ï;(t)/t=0. Since xn¡i e FT for

O^/'^n, (3) implies

2r)(Tln)nlT > |(h/F)(xm+1 - xn¡i) - AxnJ

and (7) follows at once. The proof is complete.

Remark 1. Let E^Rm and B:[a, b)xE-+Rm be continuous and

satisfy

(Bx) lim h-1 \y + hB(t, y), E\ = 0   for / e [a, b), y e E.

Let F=[a,b)xE and A:F-*Rm+l be defined by A(t,y) = (l, B(t,y)) for

(t,y)eF.lfte[a,b),

\(t,y) + hA(t,y), F\ = \y + hB(t,y), E\

provided h^.0 is sufficiently small. Thus A satisfies the assumptions of

Theorem 1. Moreover, if £ is locally closed (or closed), Fis locally closed.

In the usual way, we conclude:

Theorem 2. Let E be locally closed and B:[a,b)x E-*Rm be continuous

and satisfy (Bx). lf(r, z) e [a, b)xE, then there is a T,0<T<b—T, anda

continuously differentiate function u: [t, t+F]—*-E such that w(t)=z and

u'(t)=B(t, u(t))for t e [r, r+ T).

Remark 2. The proof of Lemma 1 shows that (A2)=>(Aj) if F is a

locally weakly closed subset of a Hubert space H and A : F-*H is con-

tinuous.
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Remark 3. The author proved Lemma 1 in 1971 in response to a

query of R. Redheffer concerning the implication (A2)=>(Aj). The proofs

of Lemma 1 of the current paper and Theorem 1 of [5], which are related,

were obtained independently.

Remark 4. After the preparation of this note, P. Hartman kindly

provided the author with a preprint of the paper [3] which contains,

among other interesting results, a version of Theorem 1. Hartman's

proof of Theorem 1 is shorter than that given here, but it does not include

the fact that Theorem 1 is valid under the assumption (A2) in place of (A,).

Certain convexity assumptions employed in [3] can be eliminated by using

the normals v(x) employed here and Lemma 1. For this purpose, it is worth

noting that v(x) is closed, convex and rv(x)<^v(x) for 0^r<l.
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