A GENERALIZATION OF PEANO'S EXISTENCE THEOREM AND FLOW INVARIANCE

MICHAEL G. CRANDALL¹

ABSTRACT. Let $F \subseteq \mathbb{R}^n$ be closed and $A: F \to \mathbb{R}^n$ be continuous. Assuming that for $y \in F$ the distance from y + hAy to F is o(h) as $h \downarrow 0$, it is shown that for each $x \in F$ the Cauchy problem u' = Au, u(0) = x, has a solution $u: [0, T_x] \to F$ on some interval $[0, T_x], T_x > 0$.

Throughout this note F is a subset of R^m , $A:D(A) \rightarrow R^m$ is a continuous function with domain D(A), and $F \subseteq D(A) \subseteq R^m$. $B_r(x)$ is the closed ball of radius r and center x in R^m . We will always assume that F is locally closed, i.e. for each $x \in F$ there is an r > 0 such that $F \cap B_r(x)$ is closed in R^m . The euclidean norm of $y \in R^m$ is denoted by |y| and |y|, |y| stands for the distance from y to |y|. Our main result concerns the Cauchy problem

$$(1) u' = Au, u(0) = x.$$

By a solution of (1) on an interval [0, a], a>0, we mean a continuously differentiable function $u:[0, a] \rightarrow D(A)$ such that u(0)=x and u'(t)=Au(t) for $0 \le t \le a$.

THEOREM 1. Let

(A₁)
$$\lim_{h \downarrow 0} h^{-1} |z + hAz, F| = 0 \text{ for } z \in F.$$

Then for each $x \in F$ there is a positive number T and a solution u of (1) on [0, T] such that $u(t) \in F$ for $0 \le t \le T$.

This theorem is related to results of Bony [1] and Brezis [2]. We say that F is forward invariant for (1) if whenever u is a solution of (1) on [0, a], a>0, and $x \in F$, then $u(t) \in F$ for $0 \le t \le a$. If D(A) contains a neighborhood of F and F is forward invariant for (1), Theorem 1 is an obvious consequence of the Peano existence theorem. Brezis established that F is forward invariant for (1) if F is closed, (A_1) holds and A is Lipschitz continuous. Bony replaced (A_1) with a subtler condition. Let $x \in F$ and $y \in R^m$. If the interior of $B_{|y-x|}(y)$ does not meet F we say that y-x is a normal to F at x in the sense of Bony. Let v(x) be the set of such

Received by the editors April 25, 1972.

AMS 1970 subject classifications. Primary 34G05.

¹ Sponsored by the U.S. Army under Contract No. DA-31-124-ARO-D-462.

normals for $x \in F$. Bony showed that if F is closed, A is Lipschitz continuous and

$$(A_2) (z, Ax) \leq 0 \text{for } x \in F \text{ and } z \in v(x),$$

then F is forward invariant for (1). Here (,) denotes the euclidean inner-product. Theorem 1 goes beyond such considerations in that it asserts the existence of solutions u with values in F in a generality which allows F to fail to be forward invariant for (1). Moreover, if F is closed and solutions of (1) for $x \in F$ are locally (forward) unique, then it follows at once from Theorem 1 that F is forward invariant for (1). This result generalizes the results of Brezis and Bony. Moreover, it settles a problem mentioned in Redheffer [5]. The results of Brezis and Bony are extended and simplified in [5].

Our proof is a simple adaptation of the method of polygonal approximation. The success of the argument rests on Lemma 1 which shows that if (A_1) holds, then it holds uniformly on compact subsets of F. It is obvious that $(A_1) \Rightarrow (A_2)$. Moreover, it is clear that if the conclusion of Theorem 1 holds, then (A_1) holds (see, e.g., [2]). Lemma 1 actually asserts that if (A_2) holds, then (A_1) holds uniformly on compact subsets of F, which does not seem obvious. As regards Theorem 1, see §5 of [4].

In [4] R. H. Martin carries out related investigations in a more complex infinite dimensional setting under assumptions which guarantee uniqueness of solutions of (1).

PROOF OF THEOREM 1. Let $x \in F$ and $F_r = B_r(x) \cap F$. Choose r > 0 so that F_{2r} is closed and set

(2)
$$M = \max(\max\{|Ax|: x \in F_{2r}\}, 1), \quad T = r/3M.$$

For each integer n>0, set $x_{n,0}=x$ and inductively choose $x_{n,i} \in F$, $1 \le i \le n$, satisfying

(3)
$$2|x_{n,i} + (T/n)Ax_{n,i}, F| \ge |x_{n,i+1} - (x_{n,i} + (T/n)Ax_{n,i})|.$$

The existence of $\{x_{n,i}\}_{i=0}^n$ is obvious once we show that if $x_{n,i}$ is defined for $0 \le i \le k \le n$ and $x_{n,i} \in F_r$ for $0 \le i < k$, then $x_{n,k} \in F_r$. If $z \in F_{2r}$, then

$$|z + (T/n)Az, F| \le |(z + (T/n)Az) - z| \le (T/n)M.$$

It then follows from (3) that

$$|x_{n,i+1} - x_{n,i}| \le (3T/n)M$$

for $0 \le i \le k-1$. Hence

$$|x_{n,k} - x| \le \sum_{i=1}^{k-1} |x_{n,i+1} - x_{n,i}| \le (k3T/n)M \le 3MT \le r.$$

To continue, define $u_n: [0, T] \rightarrow \mathbb{R}^n$ by

(5)
$$u_n(t) = x_{n,i} + (t - iT/n)(n/T)(x_{n,i+1} - x_{n,i})$$

for $iT/n \le t \le (i+1)T/n$, $0 \le i \le n-1$. Each u_n is a continuous piecewise linear mapping, $u_n(0) = x$, and by (4),

$$(6) |u_n'(t)| \le 3M$$

for $0 \le t \le T$ and $t \notin \{iT/n: i=0, 1, \cdots, n\}$. It follows at once from the Arzela-Ascoli theorem that $\{u_n\}_{n=1}^{\infty}$ has a subsequence $\{u_{n(k)}\}_{k=1}^{\infty}$ which converges uniformly on [0, T] to a limit u(t). Clearly $|u_n(t), F| \le 3MT/n$ for $t \in [0, T]$, so $|u(t), F| \le 0$. Since $|u_n(t) - x| \le 3MT \le r$ for $0 \le t \le T$, $u(t) \in B_r(x)$. Thus $|u(t), F| = |u(t), F_{2r}|$. Since F_{2r} is closed $u(t) \in F$. Let D_r denote the right derivative. Since $D_r u_n(t) = (n/T)(x_{n,i+1} - x_{n,i})$ for $iT/n \le t < (i+1)T/n$ it will follow easily that $\lim_{k \to \infty} |D_r u_{n(k)}(t) - Au(t)| = 0$ holds uniformly in t, $0 \le t < T$, if we show

(7)
$$\lim_{n \to \infty} \max_{0 \le i \le n-1} |(n/T)(x_{n,i+1} - x_{n,i}) - Ax_{n,i}| = 0.$$

Thus the proof that u(t) is a solution of (1) is completed by verifying (7), which is established with the aid of:

LEMMA 1. Let A satisfy (A_2) . Then (A_1) holds uniformly on every compact subset of F.

PROOF. Let $C \subseteq F$ be compact. Since F is locally closed, C has a compact neighborhood K in R^n such that $K \cap F = C_1$ is compact. There is an $h_0 > 0$ such that $|x + hAx, F| = |x + hAx, C_1|$ for $x \in C$ and $0 \le h \le h_0$. We assume $0 \le s$, $\tau \le h_0$ everywhere below. Let $x \in C$ and $y_\tau = x + \tau Ax$. Choose $x_\tau \in C_1$ such that $|y_\tau, F| = |y_\tau - x_\tau|$. Set

(8)
$$\gamma(r) = \sup\{|Az - Ay| : z, y \in C_1 \text{ and } |z - y| \le r\}$$

and

(9)
$$f(\tau) = |y_{\tau}, F|^2$$

Let $0 \le s < \tau \le h_0$. Then, using (8) and (9),

$$f(\tau) - f(s) = |y_{\tau} - x_{\tau}|^{2} - |y_{s} - x_{s}|^{2} \leq |y_{\tau} - x_{s}|^{2} - |y_{s} - x_{s}|^{2}$$

$$= |y_{\tau} - y_{s}|^{2} + 2(y_{\tau} - y_{s}, y_{s} - x_{s})$$

$$= (\tau - s)^{2} |Ax|^{2} + 2(\tau - s)(Ax_{s}, y_{s} - x_{s})$$

$$+ 2(\tau - s)(Ax - Ax_{s}, y_{s} - x_{s})$$

$$\leq (\tau - s)^{2} |Ax|^{2} + 2(\tau - s)(Ax_{s}, y_{s} - x_{s})$$

$$+ 2(\tau - s)\gamma(|x - x_{s}|)\sqrt{f(s)}.$$

Next observe that $y_s - x_s \in v(x_s)$ and

$$|x - x_s| \le |x - y_s| + |y_s - x_s| \le 2|x - y_s| = 2s|Ax|.$$

Hence (by (A_2)) $(Ax_s, y_s - x_s) \le 0$ and $\gamma(|x - x_s|) \le \gamma(2s|Ax|)$. Using these estimates in (10), dividing by $(\tau - s)$ and letting $s \uparrow \tau$ yields

$$\limsup_{s \uparrow \tau} \frac{f(\tau) - f(s)}{\tau - s} \le 2\gamma (2\tau |Ax|) \sqrt{(f(\tau))}.$$

It follows at once that

(11)
$$\sqrt{(f(h))} = |x + hAx, F| \le \int_0^h \gamma(Ls) \, ds$$

where $L=2 \max\{|Ax|: x \in C_1\}$. Since A is uniformly continuous on C_1 , $\lim_{r\downarrow 0} \gamma(r)=0$. Thus the right-hand side of (11) is o(h) as $h\downarrow 0$, and the proof is complete.

We finish the proof of Theorem 1. Set $\eta(\tau) = \sup\{|y + \tau Ay, F| : y \in F_{\tau}\}$. Since $(A_1) \Rightarrow (A_2)$, Lemma 1 implies that $\lim_{\tau \downarrow 0} \eta(\tau)/\tau = 0$. Since $x_{n,i} \in F_{\tau}$ for $0 \le i \le n$, (3) implies

$$2\eta(T/n)n/T \ge |(n/T)(x_{n,i+1} - x_{n,i}) - Ax_{n,i}|$$

and (7) follows at once. The proof is complete.

REMARK 1. Let $E \subseteq \mathbb{R}^m$ and $B: [a, b) \times E \rightarrow \mathbb{R}^m$ be continuous and satisfy

(B₁)
$$\lim_{h \to 0} h^{-1} |y + hB(t, y), E| = 0$$
 for $t \in [a, b), y \in E$.

Let $F = [a, b) \times E$ and $A: F \rightarrow R^{m+1}$ be defined by A(t, y) = (1, B(t, y)) for $(t, y) \in F$. If $t \in [a, b)$,

$$|(t, y) + hA(t, y), F| = |y + hB(t, y), E|$$

provided $h \ge 0$ is sufficiently small. Thus A satisfies the assumptions of Theorem 1. Moreover, if E is locally closed (or closed), F is locally closed. In the usual way, we conclude:

THEOREM 2. Let E be locally closed and B: $[a,b) \times E \rightarrow R^m$ be continuous and satisfy (B_1) . If $(\tau,z) \in [a,b) \times E$, then there is a T, $0 < T < b - \tau$, and a continuously differentiable function $u: [\tau, \tau + T] \rightarrow E$ such that $u(\tau) = z$ and u'(t) = B(t, u(t)) for $t \in [\tau, \tau + T]$.

REMARK 2. The proof of Lemma 1 shows that $(A_2) \Rightarrow (A_1)$ if F is a locally weakly closed subset of a Hilbert space H and $A: F \rightarrow H$ is continuous.

REMARK 3. The author proved Lemma 1 in 1971 in response to a query of R. Redheffer concerning the implication $(A_2) \Rightarrow (A_1)$. The proofs of Lemma 1 of the current paper and Theorem 1 of [5], which are related, were obtained independently.

REMARK 4. After the preparation of this note, P. Hartman kindly provided the author with a preprint of the paper [3] which contains, among other interesting results, a version of Theorem 1. Hartman's proof of Theorem 1 is shorter than that given here, but it does not include the fact that Theorem 1 is valid under the assumption (A_2) in place of (A_1) . Certain convexity assumptions employed in [3] can be eliminated by using the normals v(x) employed here and Lemma 1. For this purpose, it is worth noting that v(x) is closed, convex and $v(x) \subset v(x)$ for $0 \le r \le 1$.

REFERENCES

- 1. J.-M. Bony, Principe du maximum, inéqualité de Harnack et unicité du problèmes de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier Grenoble 19 (1969), 277-304.
- 2. H. Brezis, On a characterization of flow-invariant sets, Comm. Pure Appl. Math. 23 (1970), 261-263. MR 41 #2161.
- 3. P. Hartman, On invariant sets and on a theorem of Ważewski, Proc. Amer. Math. Soc. 32 (1972), 511-520.
- 4. R. H. Martin, Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. (to appear).
- 5. R. M. Redheffer, The theorems of Bony and Brezis on flow-invariant sets, Amer. Math. Monthly (to appear).

MATHEMATICS RESEARCH CENTER, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024 (Current address)