THE ISOMETRIES OF $H^{\infty}(K)$

MICHAEL CAMBERN

ABSTRACT. Let K be a finite-dimensional Hilbert space. In this article a characterization is given of the linear isometries of the Banach space $H^{\infty}(K)$ onto itself. It is shown that T is such an isometry iff T is of the form $(TF)(z) = \mathcal{F}F(t(z))$, for $F \in H^{\infty}(K)$ and z belonging to the unit disc, where t is a conformal map of the disc onto itself and \mathcal{F} is an isometry of K onto K.

0. Introduction. Throughout this paper the letter K represents a finite-dimensional complex Hilbert space. We denote by $\langle \cdot, \cdot \rangle$ the inner product in K, and fix some orthonormal basis $\{e_1, \dots, e_N\}$ of K. Let $H^{\infty}(K)$ be the Banach space of functions F defined on the unit circle to K such that the scalar function $\langle F, e \rangle$ belongs to H^{∞} of the circle for each $e \in K$, and such that $\|F\|_{\infty} = \text{ess sup } \|F(e^{ix})\|$ is finite. (Here $\|\cdot\|_{\infty}$ denotes the norm in $H^{\infty}(K)$, and $\|\cdot\|$ that in K.)

If $F \in H^{\infty}(K)$, we define the H^{∞} coordinate functions f_n by $f_n(e^{ix}) = \langle F(e^{ix}), e_n \rangle$. Then almost everywhere we have $\sum_{n=1}^N |f_n(e^{ix})|^2 < \infty$, and $F(e^{ix}) = \sum_{n=1}^N f_n(e^{ix})e_n$. Moreover, each $F \in H^{\infty}(K)$ may be extended (via a power series) to an analytic function F(z) on the unit disc $D = \{z: |z| < 1\}$, having boundary values a.e. which determine F on the circle. This analytic function coincides with the function obtained by extending to D, in the usual way, the coordinate functions in the expression $F = \sum_n f_n e_n$. Thus, whenever it is convenient to do so, we may think of $H^{\infty}(K)$ as a space of bounded, vector-valued, analytic functions defined on D.

In recent years considerable work has been directed toward the determination of what properties of the Hardy classes H^p , $1 \le p \le \infty$, can be generalized to the analogous spaces $H^p(K)$ of vector-valued functions. An excellent account of what had been done along these lines through the year 1964 can be found in the book by Helson [2]. Here we investigate the isometries of $H^{\infty}(K)$, which have been described for H^{∞} (i.e. for one-dimensional K), by deLeeuw, Rudin, and Wermer [5], and quite independently by Nagasawa [6]. Although our results generalize those of [5] and [6], the proofs, of necessity, require a quite different approach, since

Received by the editors December 17, 1971.

AMS 1970 subject classifications. Primary 43A15, 46E15, 46E30; Secondary 30A78, 30A96, 46J15.

Key words and phrases. Isometry, extreme point, maximal ideal space, Choquet boundary, Šilov boundary, representing measure.

[©] American Mathematical Society 1972

the authors of [5] and [6] rely heavily on the fact that $H^{\infty}(K)$ is a Banach algebra when K is one-dimensional.

- 1. Extreme points in $H^{\infty}(K)^*$. Let Y denote the maximal ideal space of H^{∞} of the circle, and U denote the closed unit ball in K. Let X be the compact Hausdorff space $Y \times U$. If $F = \sum_n f_n e_n \in H^{\infty}(K)$, consider the function $\hat{F}: Y \to K$ determined by $\hat{F}(y) = \sum_n f_n(y)e_n$, where $f \to \hat{f}$ is the Gelfand representation of H^{∞} . (It is easy to see, by virtue of the density of D in Y, that the function \hat{F} so defined is independent of our choice of orthonormal basis for K.) Next define the scalar function \hat{F} on X by $\tilde{F}(y,e) = \langle \hat{F}(y),e \rangle$, $(y,e) \in X$. Since each \hat{f}_n is continuous on Y, it is clear that \hat{F} is continuous from Y to K, and hence that \tilde{F} is continuous on X. Thus if we let $M = \{\tilde{F}: F \in H^{\infty}(K)\}$, the following lemma is then evident.
- LEMMA 1.1. M is a closed subspace of C(X), the space of all continuous, complex-valued functions on X, and the mapping $F \rightarrow \tilde{F}$ is a linear isometry of $H^{\infty}(K)$ onto M.

We let B denote the Choquet boundary for H^{∞} , considered as a function algebra on its maximal ideal space Y [7].

LEMMA 1.2. A linear functional $\tilde{F}^* \in M^*$ is an extreme point of the unit ball of M^* iff \tilde{F}^* is of the form $\tilde{F}^*(\tilde{F}) = \tilde{F}(y, e)$, for some $y \in B$ and some $e \in K$ with ||e|| = 1.

PROOF. Suppose that \tilde{F}^* is extreme. Then it is well known that $\tilde{F}^*(\tilde{F}) = \tilde{F}(y, e)$ for some $(y, e) \in X$ [1, p. 441]. (Note that for scalars λ with $|\lambda| \leq 1$, $\lambda \tilde{F}(y, e) = \tilde{F}(y, \bar{\lambda}e)$.) We claim that $y \in B$. For if not, there exist elements $f_i^* \in (H^{\infty})^*$, i=1, 2, with $||f_i^*|| \leq 1$, each distinct from the point evaluation at y, such that $\hat{f}(y) = \frac{1}{2}[f_1^*(f) + f_2^*(f)]$ for each $f \in H^{\infty}$. Define elements $\tilde{F}_i^* \in M^*$ by $\tilde{F}_i^*(\tilde{F}) = f_i^*(\langle F, e \rangle)$, for i=1,2 and $\tilde{F} \in M$. Then it is easily seen that the \tilde{F}_i^* are distinct elements of the unit ball of M^* , and that $\tilde{F}^* = \frac{1}{2}[\tilde{F}_1^* + \tilde{F}_2^*]$, contradicting the assumption that \tilde{F}^* is extreme. Thus $y \in B$, and an analogous argument shows that ||e|| = 1.

Conversely, suppose that \tilde{F}^* is of the form specified in the lemma. If \tilde{F}^* is not extreme as claimed, there exist functionals \tilde{F}^*_i , i=1,2, both distinct from \tilde{F}^* and belonging to the unit ball of M^* , such that for all $\tilde{F} \in M$, $\tilde{F}(y,e)=\frac{1}{2}[\tilde{F}_1^*(\tilde{F})+\tilde{F}_2^*(\tilde{F})]$. Thus by the Hahn-Banach theorem and the Riesz representation theorem, we can find norm-preserving extensions of the \tilde{F}^*_i to regular complex Borel measures μ_i on X. Let μ_1 and μ_2 be any two such extensions. Then it is clear that neither μ_i can be a scalar multiple of the point mass at (y,e). Thus by the regularity of the μ_i , there exist a positive number ε , and an open set O in X, where $O=V\times W$, V an open neighborhood of y in Y and Y an open neighborhood of Y in Y and Y in Y in

Next note that $e' \rightarrow |\langle e, e' \rangle|$ is a continuous function on U - W. Since U - W is compact, this function attains a maximum equal to $1 - \delta$, for some $\delta > 0$, on this set.

Now let f be a function in H^{∞} such that $1 = ||f|| = \hat{f}(y)$, and $|\hat{f}| < \delta \varepsilon / 2$ on Y - V. (Such an f exists since $y \in B$.) Then defining $F \in H^{\infty}(K)$ by F = fe, we would have

$$1 = \langle \hat{F}(y), e \rangle = \tilde{F}(y, e) = \frac{1}{2} \left[\int \tilde{F} d\mu_1 + \int \tilde{F} d\mu_2 \right]$$

$$= \frac{1}{2} \left[\int_{O} \tilde{F} d(\mu_1 + \mu_2) + \int_{V \times (U - W)} \tilde{F} d(\mu_1 + \mu_2) + \int_{(Y - V) \times U} \tilde{F} d(\mu_1 + \mu_2) \right]$$

$$\leq \frac{1}{2} \left[(|\mu_1| + |\mu_2|)(O) + (1 - \delta)(2 - (|\mu_1| + |\mu_2|)(O)) + \delta \varepsilon \right]$$

$$< 1 - \delta \varepsilon / 2 < 1.$$

This contradiction then completes the proof of the lemma.

If $y \in Y$ and e is any element of K, we define the element $L_{(y,e)}$ of $H^{\infty}(K)^*$ by $L_{(y,e)}(F) = \langle \hat{F}(y), e \rangle$, for $F \in H^{\infty}(K)$. Let S denote the set of extreme points of the unit ball of $H^{\infty}(K)^*$. The two previous lemmas then give:

THEOREM 1. The set S consists of all functionals of the form $L_{(v,e)}$, where $y \in B$ and e is an element of K with ||e|| = 1.

2. The isometries. Throughout this section, T will denote a fixed isometry of $H^{\infty}(K)$ onto itself. For any element $e \in K$, we denote by e that element of $H^{\infty}(K)$ which is constantly equal to e.

LEMMA 2.1. Let e be any nonzero vector in K, and define a map $\tau: B \rightarrow B$ by $y' = \tau(y)$ if

(1)
$$T^*L_{(y,e)} = L_{(y',e')}$$

for some $e' \in K$. Then τ is a one-one map of B onto itself, and is independent of the choice of e in $K-\{0\}$. Moreover, for fixed $y \in B$, the set of all e' given by (1) as e varies in $K-\{0\}$ is all of $K-\{0\}$.

PROOF. If n > 1, then since T^* preserves the set S, we have $T^*L_{(y,e_1)} = L_{(y_1,e_1')}$ and $T^*L_{(y,e_n)} = L_{(y_n,e_{n'})}$, for certain $y_1, y_n \in B$ and $e'_1, e'_n \in K$ with $\|e'_1\| = \|e'_n\| = 1$. Now $L_{(y,(e_1+e_n)/\sqrt{2})} \in S$, and we have

$$T^*L_{(y,(e_1+e_n)/\sqrt{2})} = T^*[(\sqrt{2})^{-1}L_{(y,e_1)} + (\sqrt{2})^{-1}L_{(y,e_n)}]$$

= $(\sqrt{2})^{-1}L_{(y_1,e_1')} + (\sqrt{2})^{-1}L_{(y_n,e_n')}.$

If $y_1 \neq y_n$, then it is easy to see that the norm of the right-hand side is $\sqrt{2}$, while that of the left-hand side is 1. Thus we must have $y_1 = y_n$, which

proves that τ is independent of the choice of e. The remaining assertions of the lemma now follow easily by considering the function T^{*-1} .

LEMMA 2.2. For each $y \in B$, and each n with $1 \le n \le N$,

$$T^*L_{(y,(Te_n)^{\wedge}(y))} = L_{(\tau(y),e_n)},$$

and the set $\{(Te_n)^{\hat{}}(y): n=1, \cdots, N\}$ is an orthonormal basis for K.

PROOF. By Lemma 2.1, for each n there exists $\varphi_n \in K$ with $\|\varphi_n\| = 1$, such that $T^*L_{(y,\varphi_n)}=L_{(\tau(y),e_n)}$. We thus have

$$1 = \langle e_n, e_n \rangle = \langle e_n(\tau(y)), e_n \rangle = L_{(\tau(y), e_n)}(e_n)$$

= $T^{*-1}L_{(\tau(y), e_n)}(Te_n) = L_{(y, \varphi_n)}(Te_n) = \langle (Te_n)^{\hat{}}(y), \varphi_n \rangle.$

And since $||(Te_n)^{\hat{}}(y)|| \leq 1$, we must have $\varphi_n = (Te_n)^{\hat{}}(y)$. Thus

$$T^*L_{(y,(T_{e_n})^{\wedge}(y))} = L_{(\tau(y),e_n)}.$$

Next suppose that e_k , $k \neq n$, is a second element of the given orthonormal basis. Then $T^*L_{(y,\varphi_k)} = L_{(r(y),e_k)}$, where $\varphi_k = (Te_k)^{\hat{}}(y)$. We thus have

$$\langle \varphi_n, \varphi_k \rangle = \langle (Te_n)^{\hat{}}(y), \varphi_k \rangle = L_{(y,\varphi_k)}(Te_n)$$

= $T^*L_{(y,\varphi_k)}(e_n) = L_{(T(y),e_k)}(e_n) = \langle e_n, e_k \rangle = 0,$

and hence $\{(Te_n)^{\hat{}}(y): n=1, \dots, N\}$ is an orthonormal basis.

LEMMA 2.3. If $F = \sum_{n} f_{n}e_{n} \in H^{\infty}(K)$, then for all $y \in B$, (a) $(TF)^{\hat{}}(y) = \sum_{n} (\hat{f}_{n} \circ \tau)(y)(Te_{n})^{\hat{}}(y)$, and

(b)
$$(T^{-1}F)^{\hat{}}(y) = \sum_{n} (\hat{f}_{n} \circ \tau^{-1})(y)(T^{-1}e_{n})^{\hat{}}(y).$$

PROOF. Since for each $y \in B$, $\{(Te_n)^{\hat{}}(y)\}$ is a basis for K, we can write $(TF)^{\hat{}}(y) = \sum_{n} h_{n}(y)(Te_{n})^{\hat{}}(y)$, where the h_{n} are scalar functions defined on B. Now fixing y and n, let $\varphi_n = (Te_n)^{\hat{}}(y)$. Then (using Lemma 2.2) we have

$$\begin{split} h_n(y) &= \langle (TF) \hat{\ }(y), \, \varphi_n \rangle = L_{(y,\varphi_n)}(TF) \\ &= T^*L_{(y,\varphi_n)}(F) = L_{(\tau(y),e_n)}(F) \\ &= \langle \hat{F}(\tau(y)), \, e_n \rangle = (\hat{f}_n \circ \tau)(y), \end{split}$$

proving (a). (b) then follows by interchanging the roles of T and T^{-1} , τ and τ^{-1} .

Throughout the remainder of this article, we denote by A the algebra consisting of the restrictions to B of all \hat{f} , for $f \in H^{\infty}$.

LEMMA 2.4. For each n, Te_n is a constant element of $H^{\infty}(K)$ (i.e. an element of K).

PROOF. Suppose that $Te_n = \sum_k f_{nk} e_k$, and that $T^{-1}e_n = \sum_k g_{nk} e_k$. Then for $y \in B$,

$$e_n(y) = (TT^{-1}e_n)^{\hat{}}(y) = \left(T\left(\sum_k g_{nk}e_k\right)\right)^{\hat{}}(y)$$
$$= \sum_k (\hat{g}_{nk} \circ \tau)(y)(Te_k)^{\hat{}}(y) = \sum_j \left(\sum_k (\hat{g}_{nk} \circ \tau)(y)\hat{f}_{kj}(y)\right)e_j.$$

Hence we have

$$\left\langle \sum_{k} (\hat{g}_{nk} \circ \tau)(y) e_{k}, \sum_{k} \hat{f}_{kj}^{*}(y) e_{k} \right\rangle = \delta_{nj},$$

(where f^* denotes the complex conjugate of f). And since

$$\left\{ \sum_{k} (\hat{g}_{nk} \circ \tau)(y) e_{k} : n = 1, \cdots, N \right\} = \left\{ (T^{-1}e_{n})^{\hat{}}(\tau(y)) : n = 1, \cdots, N \right\}$$

is an orthonormal basis for K (by Lemma 2.2 with T^{-1} replacing T), we conclude that $\sum_{k} (\hat{g}_{nk} \circ \tau)(y) e_{k} = \sum_{k} \hat{f}_{kn}^{*}(y) e_{k}$ for all n, and hence that $(\hat{g}_{nk} \circ \tau)(y) = \hat{f}_{kn}^{*}(y)$ for all n, k and all $y \in B$.

Next, for $y \in B$,

$$(T(g_{nk}e_k))^{\hat{}}(y) = \sum_{j} (\hat{g}_{nk} \circ \tau)(y) \hat{f}_{kj}(y) e_j,$$

so that $|\hat{f}_{kn}(y)|^2 = (\hat{g}_{nk} \circ \tau)(y)\hat{f}_{kn}(y) = \langle (T(g_{nk}e_k))^{\hat{}}(y), e_n \rangle \in A$. That is $|\hat{f}_{kn}|^2|_B = \hat{f}|_B$, for some $f \in H^{\infty}$. And since \hat{f} is real-valued on B, the fact that each complex homomorphism of H^{∞} has a positive representing measure on B [3, p. 181] then implies that f is a constant function, say $f(z) = \lambda$ for all $z \in D$. (Here we use the fact that B is the Šilov boundary for H^{∞} , as may be seen by a construction paralleling that found on p. 174 of [3], and by the characterization of the points of B given in Corollary 8.3 (2), p. 53, of [7].)

Finally we have, for $y \in B$,

$$(T(g_{nk}^2 e_k))^{\hat{}}(y) = \sum_{j} (\hat{g}_{nk} \circ \tau)^2(y) \hat{f}_{kj}(y) e_j,$$

so that $\langle (T(g_{nk}^2 e_k))^{\hat{}}(y), e_n \rangle = \lambda \hat{f}_{kn}^*(y) \in A$, and hence $\hat{f}_{kn}^*|_B \in A$. Again by consideration of representing measures, we conclude that f_{kn} is a constant function, all k and n.

THEOREM 2. Every linear isometry of $H^{\infty}(K)$ onto itself is of the form $(TF)(z) = \mathcal{F}F(t(z))$, $F \in H^{\infty}(K)$, |z| < 1, where \mathcal{F} is an isometry of K onto K and t is a conformal map of the unit disc onto itself. Conversely, every map T of this form is an isometry of $H^{\infty}(K)$ onto itself.

PROOF. The converse is immediate. Thus suppose that T is an isometry of $H^{\infty}(K)$ onto itself. We define \mathcal{T} on the basis vectors e_n by letting $\mathcal{T}e_n$ be the constant value of Te_n , and then extend \mathcal{T} linearly to K.

Now define $\Phi: H^{\infty} \to A$ by $\Phi(f) = \hat{f}|_{B}$. Let $\varphi_1 = \mathcal{T}e_1$ and define $\Psi: A \to A$ by $(\Psi \hat{f})(y) = \langle (T(fe_1))^{\hat{}}(y), \varphi_1 \rangle$ for $y \in B$. By Lemma 2.3(a), $(\Psi \hat{f})(y) = (\hat{f} \circ \tau)(y)$, and thus $\hat{f} \circ \tau = \Psi \hat{f} \in A$. Thus to show that Ψ maps A onto itself, it suffices to show that given $f \in H^{\infty}$, then $\hat{f} \circ \tau^{-1} \in A$. But by Lemma 2.3(b), $(T^{-1}(f\varphi_1))^{\hat{}}(y) = (\hat{f} \circ \tau^{-1})(y)e_1$, so that

$$(\hat{f} \circ \tau^{-1})(y) = \langle (T^{-1}(f\varphi_1))^{\hat{}}(y), e_1 \rangle \in A.$$

Since Φ and Ψ are obviously multiplicative, $\Phi^{-1}\Psi\Phi$ is an algebra automorphism of H^{∞} onto itself, and hence by a result of Kakutani [4], for $f \in H^{\infty}$, $\Phi^{-1}\Psi\Phi(f)=f \circ t$, where t is a conformal map of the disc onto itself. Once more employing Lemma 2.3, we find that $(TF)(z)=\mathcal{F}(F \circ t)(z)$, $F \in H^{\infty}(K)$ and $z \in D$, as claimed.

REMARKS. Much of the vectorial H^p theory, as developed in [2], is valid for arbitrary separable Hilbert space K. Thus it is natural to ask if Theorem 2 is true when K is infinite dimensional. The proofs given in §2 depend on finite dimensionality only to the extent that they depend on the characterization of extreme points in $H^\infty(K)^*$ obtained in §1. (Given that the extreme points are the same, a simple argument then shows that the orthonormal set provided by Lemma 2.2 is complete when K is infinite dimensional.) Thus, if indeed the extreme points should have the same characterization for infinite-dimensional K, the theorem holds in this case as well.

REFERENCES

- 1. N. Dunford and J. T. Schwartz, *Linear operators*. I: *General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 2. H. Helson, Lectures on invariant subspaces, Academic Press, New York, 1964. MR 30 #1409.
- 3. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 24 #A2844.
- 4. S. Kakutani, Rings of analytic functions. Lectures on functions of a complex variable, Univ. of Michigan Press, Ann Arbor, Mich., 1955. MR 16, 1125.
- 5. K. deLeeuw, W. Rudin and J. Wermer, The isometries of some function spaces, Proc. Amer. Math. Soc. 11 (1960), 694-698. MR 22 #12380.
- 6. M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kōdai Math. Sem. Rep. 11 (1959), 182-188. MR 22 #12379.
- 7. R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton, N.J., 1966. MR 33 #1690.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA 93106