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THE ISOMETRIES  OF  H*>(K)

MICHAEL  CAMBERN

Abstract. Let K be a finite-dimensional Hubert space. In this

article a characterization is given of the linear isometries of the

Banach space Hn (K) onto itself. It is shown that T is such an isom-

etry iff Tis of the form (TF)(z)=3~F(t(z)), for F e //»(iC) and z

belonging to the unit disc, where t is a conformai map of the disc

onto itself and 9" is an isometry of K onto K.

0. Introduction. Throughout this paper the letter K represents a

finite-dimensional complex Hubert space. We denote by (■, •) the inner

product in K, and fix some orthonormal basis {ex, ■ ■ ■ , eN} of K. Let

Hœ(K) be the Banach space of functions F defined on the unit circle to

K such that the scalar function (F, e) belongs to H°° of the circle for each

eeK, and such that ||/:'||a)=ess sup ||F(eia:)|| is finite. (Here ||-||œ denotes

the norm in HX(K), and ||-|| that in K.)

If FeHx(K), we define the /7°° coordinate functions/, by fn(eix)=

(F(etx),en). Then almost everywhere we have 2n=i l/n(e!iI)l2<00» and

F(eix)=ÍLifn(eix)en. Moreover, each Fe Hm(K) may be extended (via

a power series) to an analytic function F(z) on the unit disc D={z; \z\ < 1},

having boundary values a.e. which determine Fon the circle. This analytic

function coincides with the function obtained by extending to D, in the

usual way, the coordinate functions in the expression F= 2„ fnen- Thus,

whenever it is convenient to do so, we may think of Hœ(K) as a space

of bounded, vector-valued, analytic functions defined on D.

In recent years considerable work has been directed toward the deter-

mination of what properties of the Hardy classes Hv, l^p^ao, can be

generalized to the analogous spaces HV(K) of vector-valued functions. An

excellent account of what had been done along these lines through the

year 1964 can be found in the book by Helson [2]. Here we investigate the

isometries of //""(AT), which have been described for //°° (i.e. for one-

dimensional K), by deLeeuw, Rudin, and Wermer [5], and quite inde-

pendently by Nagasawa [6]. Although our results generalize those of [5]

and [6], the proofs, of necessity, require a quite different approach, since
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the authors of [5] and [6] rely heavily on the fact that H°° (K) is a Banach

algebra when K is one-dimensional.

1. Extreme points in HX(K)*. Let Y denote the maximal ideal space

of 7/00 of the circle, and U denote the closed unit ball in K. Let X be

the compact Hausdorff space YxU. If f=2,/„e„£r/10(i\), consider

the function F: F->-K determined by F(y)=^n fn(y)en, where /—>-/ is the

Gelfand representation of 7/°°. (It is easy to see, by virtue of the density

of D in Y, that the function F so defined is independent of our choice of

orthonormal basis for K.) Next define the scalar function F on A" by

F(y, e)=(F(y), e), (y, e) e X. Since each/„ is continuous on Y, it is clear

that F is continuous from Y to K, and hence that F is continuous on X.

Thus if we let M={F:Fe 77e0(AT)}, the following lemma is then evident.

Lemma 1.1. M is a closed subspace ofC(X), the space of all continuous,

complex-valued functions on X, and the mapping F-^F is a linear isometry

ofH™(K)ontoM.

We let B denote the Choquet boundary for 7F°, considered as a function

algebra on its maximal ideal space Y [7].

Lemma 1.2. A linear functional F* e M* is an extreme point of the

unit ball of M* iff F* is of the form F*(F)=F(y, e), for some y e B and

some e e K with ||e|| = 1.

Proof. Suppose that F* is extreme. Then it is well known that

F*(F)=F(y,e) for some (y,e)eX [1, p. 441]. (Note that for scalars X

with \X\^l,XF(y, e)=F(y, Xe).) We claim that y e B. For if not, there exist

elements f* e (/7e0)*, i=l, 2, with ||/*||^1, each distinct from the

point evaluation at y, such that f(y) = \[ft(/)+/*(/)] for each/e 7/=°.

Define elements F* 6 M* by F*(F)=f*({F, e», for /= 1, 2 and FeM.

Then it is easily seen that the F* are distinct elements of the unit ball of

M*, and that F* = \[F*+F2], contradicting the assumption that F* is

extreme. Thus y e B, and an analogous argument shows that ||e|| = 1.

Conversely, suppose that F* is of the form specified in the lemma. If

F* is not extreme as claimed, there exist functionals Ff, /=1,2, both

distinct from F* and belonging to the unit ball of M*, such that for all

FeM, F(y,e)=l[Fx*(F)+Fi(F)]. Thus by the Hahn-Banach theorem

and the Riesz representation theorem, we can find norm-preserving

extensions of the F* to regular complex Borel measures pit on X. Let pix

and p2 be any two such extensions. Then it is clear that neither pi can be

a scalar multiple of the point mass at (y, e). Thus by the regularity of the

p(, there exist a positive number e, and an open set O in X, where 0=

Vx W, Fan open neighborhood of y in Fand W an open neighborhood

of ein U, suchthat \pt\ (0)<l-s, for /= 1,2.
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Next note that e'^*\(e, e')\ is a continuous function on U—W. Since

Ü—W is compact, this function attains a maximum equal to 1— b, for

some <S>0, on this set.

Now let/be a function in Hœ such that l = \\f\\=f(y), and |/|<«5e/2
on Y—V. (Such an / exists since y e B.) Then defining FeH^(K) by

F=fe, we would have

1 = (F(y), e) = F(y, e) = - \Fdpx + \Fdp2

? d(px + p2) + \ Fd(pi + p2)+\ Fd(pi + p2)
Jo Jvx(U-W) Ji.Y-V)yU

Ú \[(\rh\ + WXQ) + (1 - à)(2 - (\pi\ + \p2\)(0)) + óe]

< 1 - os/2 < 1.

This contradiction then completes the proof of the lemma.

If y e Y and e is any element of K, we define the element Liv,e) of

H°°(K)* by L(y_e)(F)=(F(y), e), for FeH<°(K). Let S denote the set of

extreme points of the unit ball of ^(K)*. The two previous lemmas

then give :

Theorem 1. The set S consists of all functional of the form L{v,e), where

y e B and e is an element of K with ||e|| = 1.

2. The isometries. Throughout this section, T will denote a fixed isom-

etry of HX(K) onto itself. For any element e e K, we denote by e that

element of HX(K) which is constantly equal to e.

Lemma 2.1.    Let e be any nonzero vector in K, and define a map t.B-^-B

byy'=T(y)'f

(1) T*Liy e) = /.<„<„<)

for some e e K. Then r is a one-one map of B onto itself, and is independent

of the choice of e in K—{0). Moreover, for fixed y e B, the set of all e'

given by (1) as e varies in K— {0} is all of K— {0}.

Proof. If n>\, then since T* preserves the set S\ we have T*Liy,e > =

L(ïl.ei', and r*I<Viin) = L,Vn.e>i.), for certain yx, yneB and e[, e'n e K with

Kll = IKII = 1 • Now L(v.(«1+e„,/v8) e S, and we have

T ^(y.tei+fnl/V^) = T   [(-J2)    L(,,.ei) + (y/2)    L(ï><)l)]

= (V2)-1L(n,ei-) + (^Iw.').

If yx^yn, then it is easy to see that the norm of the right-hand side is y/2,

while that of the left-hand side is I. Thus we must have yx=yn, which
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proves that t is independent of the choice of e. The remaining assertions

of the lemma now follow easily by considering the function F*_1.

Lemma 2.2.    For each y e B, and each n with 1 ̂ n^N,

T*L{yATen)*(y)) = L{.Wten),

and the set {(Ten) (y):n=l, ■ ■ ■ , N} is an orthonormal basis for K.

Proof. By Lemma 2.1, for each n there exists cpn e K with ||9>„|| = 1,

such that T*L{yiPn) = L{Tiy),l,n). We thus have

1 = (en, en) = (en(-r(y)), en) = LMyhen)(en)

= T^L^^Te^ = L(v,„n)(Tt?n) = ((Tenf(y), cpn).

And since \\(Ten)*(y)\\-^.l, we must have cpn=(Ten) (y). Thus

T*L{y ,{Ten)'{y)) — £-<r(l/).en>-

Next suppose that ek, k^n, is a second element of the given orthonormal

basis. Then T*L(v<Pk) = L(Tiyi,ek), where cpk=(Tek) (y). We thus have

(<Pn, 9k) = ((TeS(y), cpk) = L{y^k)(Ten)

and hence {(Ten) (y):n= 1, • • • , TV} is an orthonormal basis.

Lemma 2.3.    If F= 2„ f„en e HX(K), then for ally e B,
(a) (FF)>)=2„ (/„ o r)(y)(TeS(y), and

(b) (T-iFy(y)=in(/„oT-i)(/)(r-'oAW.

Proof. Since for each y e B, {(Ten) (y)} is a basis for K, we can write

(TF) (y)= 2« nn(y)(Ter)*(y), where the hn are scalar functions defined on

7i. Now fixing^ and n, let cpn = (Ter) (y). Then (using Lemma 2.2) we have

hn(y) = ((TFf(y), cpn) = L{y,Vn)(TF)

— rf*L(y.<i>n)(F) — LMv).e„)(F)

= (F«v)),e„)=(/„or)(y),

proving (a), (b) then follows by interchanging the roles of Fand F-1, t

and t-1.

Throughout the remainder of this article, we denote by A the algebra

consisting of the restrictions to B of all/, for/e FT0.

Lemma 2.4. For each n, Ten is a constant element of HX(K) (i.e. an

element of K).
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Proof.    Suppose that Ten=^k fnkek, and that T~1en=ykg„kek. Then

for y e B,

en(y) = (TT-'eJ^y) = (t(% gnA)) (y)

= 2 (ênk » rXyXT^OO = 2 (2 (á* • »Xtf/wO»)*,-

Hence we have

2 (&* ° tX^K. HfUy)ek) = <5KJ-,

(where/* denotes the complex conjugate of/). And since

¡2 &.* ° *)O0V» = 1, • • • , A^J = {(F-^J^(r(j)):/7 = 1, • • •, N}

is an orthonormal basis for K (by Lemma 2.2 with T~l replacing T),

we conclude that 2* (g„k ° r)(y)ek= 2fc /*«(jK for all w, and hence that

(Êvk ° T)(7)=/*«(7) for all «, /r and all _y e B.

Next, for j e B,

(T(gnkek)f(y) = 2 (#n* ° -r)(y)fk^y)es,
i

so that |/fc„(j)|2=(|nfco7-)(J)/t?i(J)=<(7-(?nJfcefc))7j),en)e^. That is

ly*nl2U=/U> l°r some/e //°°. And since/is real-valued on B, the fact

that each complex homomorphism of //°° has a positive representing

measure on B [3, p. 181] then implies that/is a constant function, say

f(z)=X for all z e D. (Here we use the fact that B is the Silov boundary

for Hx, as may be seen by a construction paralleling that found on p. 174

of [3], and by the characterization of the points of B given in Corollary

8.3 (2), p. 53, of [7].)
Finally we have, for y e B,

(T(glkek)f(y) = 2 (Snk o r)2(y)fkj(y)ei,

so that ((T(glkek)f(y),en)=Xfk*n(y)eA, and hence/^ eX Again by

consideration of representing measures, we conclude that/tn is a constant

function, all k and n.

Theorem 2. Every linear isometry of Hx (K) onto itself is of the form

(JF)(z)=STF(t(z)), Fe HX(K), |z|<l, where 3T is an isometry of K onto

K and t is a conformai map of the unit disc onto itself. Conversely, every

map T of this form is an isometry of H°°(K) onto itself.
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Proof. The converse is immediate. Thus suppose that T is an isometry

of HK(K) onto itself. We define &~ on the basis vectors e„ by letting 3~en

be the constant value of Ten, and then extend 3~ linearly to K.

Now define <&:HX-*A by <t>(f)=f\B. Let cpx=Fex and defineY-.A-+A

byCVf)(y)=((T(fex)f(y), cpx) for y e B. By Lemma 2.3(a), (T/)(7)=
(f° r)(y), and thus/o T=x¥fe A. Thus to show thatT maps A onto itself,

it suffices to show that given fe 7/00, then f° r_1 e A. But by Lemma

2.3(b), (F-i(M))>)=(/o r^)(y)ex, so that

(/. r-i)O0 = ((F"H/<n))77), ex) e A.

Since 1> and *F are obviously multiplicative, <t>_liFO is an algebra auto-

morphism of Hx onto itself, and hence by a result of Kakutani [4], for

fe 7/°°, 0-llF<I>(/)=/° t, where t is a conformai map of the disc onto

itself. Once more employing Lemma 2.3, we find that (TF)(z)=3~(F° t)(z),

Fe FT°(K) and z e D, as claimed.

Remarks. Much of the vectorial H" theory, as developed in [2], is

valid for arbitrary separable Hubert space K. Thus it is natural to ask

if Theorem 2 is true when K is infinite dimensional. The proofs given in

§2 depend on finite dimensionality only to the extent that they depend on

the characterization of extreme points in /t™ (Te-)* obtained in §1. (Given

that the extreme points are the same, a simple argument then shows

that the orthonormal set provided by Lemma 2.2 is complete when K

is infinite dimensional.) Thus, if indeed the extreme points should have

the same characterization for infinite-dimensional K, the theorem holds

in this case as well.
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