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ON  THE  MEAN  MODULUS  OF  TRIGONOMETRIC
POLYNOMIALS AND A CONJECTURE OF S. CHOWLA

J.   CHIDAMBARASWAMY

Abstract.    Let {mk) be a strictly increasing sequence of positive

integers. S. Chowla (1965) conjectured that

7Ï

min     2 cos 2-irmtxK— en1/'-,
os*<i*=i

c>0 being an absolute constant. Let Ku K¡, ■ ■ ■ , Ks be the dis-

tinct integers m¡—mk, l^k<l^n; r¡, \<j^N, the number of

pairs (k, 1) with \¿k<l^n and ml—mk=K¡; and

r(n) =  max   r¡.
ig ígA'

Lower bounds for J¿ l2fc=i Cic4?a,r''*"*":| ííx, ck arbitrary complex

numbers and JJ | 2¡t=i y*cos 2Tr(mkx+otk)\ dx, yk^0, a.k real, are

obtained in terms of n, r(n) and the ck and yk respectively and it has

been deduced that in case r(n) = ô, independent of n, then

n j j

min     T cos 1irmkx <- n1!-.
os»<i Á 2"2 (S + 1)»"

1. Introduction. Throughout the following {mk} stands for a strictly

increasing sequence of positive integers. Chowla [2] conjectured that for

any sequence {mk}
n

(1.1) min   2 cos 2nmkx < —cn1/2,
0Sx<l k=x

c>0 being an absolute constant. Uchiyama [4] proved that given any n

distinct positive integers mx, m2, ■ ■ ■ ,mn there exists a subset m5i, mjz, ■ ■ ■,

mjr of mx, m2, ■ ■ ■ , mn such that

(1.2) min   2 cos 2^mJkx < -1-\ (~\   nm.
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In [3] Kurtz and Shah proved that

(1.3) min   2 cos 2trmkx < — (~)«1/2
oíi<i k=x \8/

for a special class of sequences which they call admissible sequences. A

sequence {mk} is called admissible if mk—mj+ml—mp^0 if k^j, k-^p,

andy^/all hold (see [3]).

The purpose of this paper is to prove (1.1) for much more general

classes of sequences {mk}. Specifically, let N=N(n) be the number of

distinct positive integers ml—mk, l^/c</^«, and let these distinct

integers be denoted by Kx, K2, • - • , Ks. Also, let for l<íj<ÍN, r, be the

number of pairs (k,l) such that \^k<l^n and ml—mk=Kj, and

r(n) = max{rx, r2, ■ ■ ■ , rN}. We shall prove (see Corollary 2.4) that, if

r(n) is independent of n, say r(n) — b, then (1.1) is true with c=

(i)8/2(l/(f5-r-l)1/2). We shall denote the class of all sequences {mk} with

r'(n) = ô by B6.

Let, for arbitrary complex sequence {ck},

n

(1.4) Sn(x) = 2 cfce(mtx),       e(x) = exp(27rix),
;t=i.

(1-5) Rn = 2 \c*\2>      Tn = Z k*l4

(1.6) L¡= 2 Refer,),       M3.= 2^ im(ckct),

(1.7) L = 2L2i,       M = 2m2,
j=l 3=1

and finally,
ii

(1.8) Tn(x, a) = Tn(x) = 2 7* cos 277(772** + afc)
jt=i

where yk^0, and at real.

Lower bounds for the mean modulus JJ |S„(x)| dx and J"J |F„(x)| ¿fa

are obtained (Theorems 1 and 2) for arbitrary sequences {mk}. We note

that our results contain the results of [3] for admissible sequences (see the

remark following Corollary 2.4). For results of different type on the

min Tn(x), we refer to Theorem 3 of [1] and Theorem 4 of [3].

2. Theorem 1.   For any sequence {mk}

¡■1 Rl'2

\Sn(x)\ dx ^-n--— ,       n = 1, 2, 3, • • •.

1 + '« - ;
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Corollary 1.1.   For any sequence {mk} e Bs

J'1                              Rm

,IS.MI<<*£7-'—^i.       " = 1.2,3.
[1+Ô-J

For the real series, we have

Theorem 2.   For any sequence {mk},

jjTn(x)\ dx^j3

JL      U/2

2-2
n = 1, 2, 3, • • •

->3/2   / i \l/2 '

(I+r(„)-i)

Corollary 2.1.    For any sequence {mk} e Bô

[  » U/2

h-îf
Corollary 2.2.    For any sequence {mk},

t  » U/2

! M
min TAx) <-Wi        " .       - - 1,2,3. ■

I1 + r(n) - ñ)

Corollary 2.3.   For any sequence {mk} e B6

Corollary 2.4.    For a«j; sequence {mk} e Bs

n 1/2

min   > cos 2nmkx < — -_—-— ,       n = 1, 2, 3, • • ■.
»s*<i^i 2a/2(l + <5)1/2

Remark. It is not hard to see that if {mk} is admissible, -3=1 and our

Corollaries 1.1, 2.1, 2.3, and 2.4 reduce to Theorems 1, 2, 3 and Corollary

of [3].

min Tn(x) < - —-—,       n = 1, 2, 3,
0Sl<l L
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3. We need only to prove Theorems 1 and 2 and the Corollary 2.2.

The proofs of Theorem 2 and Corollary 2.2 are similar to the proofs of

Theorems 2 and 3 respectively of [3]. We skip some of the details in the

proof of Theorem 2 and the proof of Corollary 2.2, referring the reader

to [3].

Lemma 1.    JJ \Sn(x)\4 dx=R2n+2(L+M).

Proof.    We have

|s„(x)|2 =  2c*c(m**)  Iv(-M
\*=1 ' l*=l '

= 2 lc*l2 +       2       cAe((mk - mt)x)
i=l kïl'.lâk.lin

= Rn+     2     icAe((mk - m,)x) + c,cke((ml - mk)x)}
lSi<lân

= Rn + 2    2    {Re(c*Ô)cos 277(m¡ - mk)x
lái<!án

+ Im(ctc,)sin 277(m, - mk)x]

which, by (1.6), is
N

(3.1) = K„ + 2 2 {lí cos 2ttK'íx + M3 sin 2-n-Kjx}.
3=1

Now, since the K¡, l^jSN, are all distinct positive integers, it follows

from (3.1) that

f1 &
\Sn(x)\*dx = R2n + 2Zm + M2)

and the lemma follows in virtue of (1.7).

Proof of Theorem 1.   By (1.6) and (1.7) we have

L + M = 2 ( 2 Re(<V,)]2
3=1 {m,-mt-Kj.lák<l¿n I

N

+ 2 2 Im(V,)
3=1 lmi-mjt=A",:láJ:<¡án

< 2 ( 2 I Referí
3=1 \m¡-mk=K¡:l¿k<l^n

+ 2( 2 Um(cfcc()|
3=1 \m,-mk=Kj:lSk<l£n
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and this by the Holder inequality is

s

ú2r¡ 2 |Re(V,)|2
3=1     mt— mk=Ki.lák<lan

A;

+ 2n 2 IMv.)l*
3=1     m¡—mk=Kj.l£k<lân

N

=sK«)2 2 {|Re(c^)|2 + |Im(ctc;)|2}
3=1 m,—mk=Kj,lëk<lén

(3.2) =r(n)     2     k»l" Ic.l*
iSkiS«

^;-T71 = í¿|c,|2)2-2|í:jt|4 = 2     2     k»l
2'C¡|2,

and hence, we have, by Lemma 1, (3.2), and the fact that r(n)^.l,

(3 3) f|5nW|4 dx = R» + r(n){*« - T"^

^ R2{1 + r(n)} - Tn.

Now, by the Holder inequality,

,m \Snix)fdx
^     Jo¡JW*)l*fi,-£ U/3

14{JjSn(x)|4 ¿xj

and this, using the fact that

£|S„(x)|2 dx = R„   (see (3.1)), and (3.3),

R„

- {R2(l + r(n)) - Tn}1/3 -

Theorem 1 is clear since by the Schwarz inequality R\^nTn.

Proof of Theorem 2.    If

« 71

un(x) = 2 y*eim** + <**)= 2 •v(a*M,?vc)'
¡t=i t=i

F„(x)=Re(i/„(x)), and hence, using (3.3),

fl|T„WI4 dx :g fWnWI4 dx ̂  if \yke(*k)\2}\l + r(n))

(3-4) „ ^ '

-lM*¿\* = iîrî) 0 + K«)) -îr4.



200 J.   CHIDAMBARASWAMY

From now on, the proof runs as that of Theorem 2 of [3] and we omit

the details.
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