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A NOTE ON INTEGRAL CLOSURE

JUDITH SALLY

Abstract.   Let R be an integrally closed domain and x¡, y¡

(l<i'<n, l^j^m) Ä-sequences. Let

T = R[x? ■ ■ ■ xï«^ ■ ■ ■ yí™],

where the a, and /?, are positive integers. If 7" is integrally closed then

(*) «,»...»«.«1    or   /?, = •••=/?„, = 1.

(*) is sufficient for T to be integrally closed in the following cases:

(1) R is Noetherian and the (x¡,yj)R are distinct prime ideals,

(2) R is a polynomial ring over an integrally closed domain and

the x¡ and y¡ are indeterminates.

It is known ([2], [3]) that the monoidal transform of a domain R with

respect to an ideal /is normal (i.e., integrally closed) if high powers of I

are complete, and that the converse holds provided that R is Noetherian.

However, in most instances, the criterion of completeness is not very

practical for proving integral closure. This paper is concerned with the

simplest case, namely the preservation of integral closure of a domain R

upon adjunction of a quotient ajb of certain elements of R. The condition

on a, b is symmetric so this work may alternately be viewed as an investi-

gation of the completeness of the ideals (a, b)k for all large k. I would

like to thank the referee for a number of helpful suggestions.

The following notation will be fixed throughout. Let R be an integrally

closed domain. Let xi,yj (l^i^n, l^j^m) be /^-sequences and let

T = R[x?x?---x'n'>lyßx*yl*---y£],

where the a¿ and ßs are positive integers.

Proposition 1.   IfTis integrally closed, then

(*) a.x = a2 = ■•• = a„ = 1     or    ßx = ß2 = • • • = ßm = 1.

Proof.   Assume a¿> 1 and ßj>\ for some i and y. Then

(x? • • • xr1 ■ ■ ■ xl"jy,)2 = (xp • • • *r2 • ■ ■ <»Xxi' • • • x? ■ ■ • x'n"ly2)
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is an element of T. To contradict the fact that Fis integrally closed we must

show that xl1 ■ ■ ■ x*i_1 • • • Xn*¡y¡ is not in T. Suppose it is. Then we have

X«l      . . . X«(-l        . . . xT/y      . = ro + ri(x«,        . . . ^yßl       . . . y^

+ --- + rk(xï---xïly(i---yt)\

where the rq are in R and &s£l. Thus,

,r*il .  .  .   „*^i_1 •   •   •   «fc/Wy«1 •   •   •   vJÍ_1 •   ■   •   van>l   —   1- Cl/l •  -  •   M^m\k
y\ y i y m   \xl xi xn )  — rO\yi y m )

+ rx(xV ■ ■ ■ xl")(y^ ■ ■ ■ y*??'1 + ■■■ + rk(x? ■ ■ ■ x«»)*.

It follows that /•„ = ró(xx1 ■ ■ ■ x?í_1 • • • x*n), for some r¡¡ e R. Henee,

(i-riyiy(tf*---y?'-1---y»ft

= x/rjí» ...&+... + rk(xï ■ ■ • xTf-1).

This gives the contradiction 1 e (x^y^R.    O

Note that the adjunction of a quotient xxjyx of irreducible i?-sequence

elements is not sufficient for the integral closure of R[xxjy{[. (For example,

let K be a field, x, y indeterminates and R=K[x, y, x2jy]P, where P—

(x,y, x2jy). If xx=x2jy and yx=y, then R[xijyx] is not integrally closed.)

In the Noetherian case, with an additional hypothesis on the ideals

(Xf,yj)R, we have a converse to Proposition I.

Theorem 2. Assume in addition that R is Noetherian and that the ideals

(xt, y,)R are distinct prime ideals. Then (*) is sufficient for T to be integrally

closed.

Remarks, (i) If R is a polynomial ring over a field and the x, and y¡

are indeterminates, then the statement of the theorem is easily checked

using the Jacobian criterion.

(ii) Under the further assumption that xt,yx, • • ■ , ym and y¡, xx, • ■ ■,

xn (1:_/^«, l^j^m) are ií-sequences, R. Fossum has given a direct

proof of the fact that the ideals

(xp • ■ • xl", yx--- ym)k,        (xx-- xn, ft ■ ■ • yß«)k

are complete for all k. It then follows from ([2], [3]) that T is integrally

closed.

Proof of Theorem 2. Since any domain is the intersection of its

localizations at maximal primes of principal ideals [1, Theorem 53], we

will show that all such localizations of T are integrally closed. Let Q be a

prime ideal of T. lfy¡ $ Q for all l^j^m, then, since T<=R[]ly(l ■ ■ • jfr],

we have that TQ=RQnR and TQ is, therefore, integrally closed. Suppose



1972] A  NOTE ON  INTEGRAL  CLOSURE 95

that y, e Q for some/'. We use the fact that

r-JiM/(j£---jfc/-*p"-xïo,

where / is an indeterminate [1, p. 102, Exercise 3]. Let Q' denote the

inverse image of Q in R[t]. Now y} e Q implies that (x^y^RcQnR for

some i*. We distinguish two cases. First, assume that Q'=(xi,yj)R[t] so

that Q=(xi,yj)T. Note that none of the elements x1,-",xi^u

xi+i, ■ ■ ■ , x„, yx, ■ ■ ■ , y¡_x, yj+l, ••• , ym, x^ ■ ■ ■ x^/j?1 • ■ ■ yl? are in Q.

If ai=--- = an=l, then QTQ=yjTp. If some afc>l but/S, = - ■■=ßm=\,

then QTq=x¡Tq. Thus (*) implies that TQ is a discrete valuation

ring (DVRj. (Note that if T is Macaulay, e.g. if R is Macaulay, the proof

is finished since we have shown that TQ is a DVR for all rank 1 primes.)

To complete the proof, we consider the case Q'^(xi,yj)R[t]. In this

case Q'l(Xi,y,)R[t] is a prime ideal of rank^l in the domain

*M/(Wi)*M-

It follows that Q' contains an JR-sequence of length 3. Thus Q contains

an /^-sequence of length 2 and cannot belong to a principal ideal.    D

If R is not Noetherian, one might drop down to a Noetherian subring

R0. However, in general, the ideals (x¡, y^R^ will not be prime. This

technique will work in the following case.

Corollary 3. Let R=S[xx, ■ ■ ■ , xn,yx, ■ ■ ■ ,ym], where S is an

integrally closed domain and the xt and y¡ are indeterminates. Then (*) is

sufficient for T to be integrally closed.

Proof. Let z=f\g with f, g e R. Suppose that there is an equation

zk+txzk~1+- ■ •-fis=0, where /, e T, l<i<k. Each ti is a polynomial in

xl1 ■ ■ ■ xl"ly{i • ■ • yl^ with coefficients hM, • : • , hid. in R. Let So be the

prime integral domain of S. Let Sx be the ring generated over S0 by the

coefficients of/and g and the coefficients of all the hi}, l—^i—^k, l^j^dt.

SxçS. Let Rx=S[[xx, ■ ■ • , x„,yx, ■ ■ ■ ,ym], where S[ is the integral

closure of Sx (in its quotient field). Si £ S so that the xt and y} are indeter-

minates over S'x. Rx is Noetherian since S[ is [4, (37.5), (35.3)]. Now z is

integral over Tx = Rx[xxxl ■ ■ ■ x^lyl1 ■ ■ • yfc]. By Theorem 2,2 6 I\£ T.

Thus, T is integrally closed.    D

We conclude with a remark concerning the general case of a monoidal

transform of a domain R with respect to an arbitrary ideal I. In [5] it is

proved that /* is complete for all k if the following conditions are satisfied:

(1) R is integrally closed, (2) r)f=0p=0, (3) Gj(R), the associated graded

ring of R with respect to /, is a domain. Actually, the proof uses (1), (2)

and the fact that Gj(R) contains no nilpotent elements so that (3) may be

replaced by (3') Gj(R) is reduced. Thus, for example, if R is an integrally
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closed domain, and /is a radical ideal which is generated by an /^-sequence

ax, ■ • • , am, and satisfies (~)f=0Ij=0, then P is complete for all k. By

([2], [3]) the monoidal transform of R with respect to /is normal.
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