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GENERATING CLASSES OF PERFECT BANACH
SEQUENCE SPACES

G.  CROFTS1

Abstract. A perfect sequence space X is said to be a step if

/lc=A"=/M and A is a Banach space in its strong topology from Xx.

In this paper a method is given to generate additional steps from a

step X. Precisely, X" is a step where X"={x=(Xi)\x¡e C and

\x\" = (\xi\")eX}, for 1</><co, with norm ||x!U»=(|| ¡xl'y1/». It

is shown that X", l<p<x>, is reflexive iff X has a Schauder basis.

The space of diagonal maps of X" into X is characterized, as is the

space of diagonal nuclear maps of X into X" when X has a Schauder

basis.

If X is a perfect sequence space which is a Banach space under the strong

topology from Xx, and contains I1 and is contained in l°°, we say that X is

a step. Examples of steps in general include the Köthe dual of the usual

sequence space associated with a Banach space possessing a normalized

unconditional basis; see [4]. More specifically the lv spaces, the spaces

pa_P and vap of Garling [5], and the spaces m(<f>) and n(<f>) of Sargent [13],

are steps. In this paper we generate additional steps from a step X by

paralleling a method of generating the /" spaces from P. In the cases where

the usual coordinate vectors form a basis for X, these generated spaces are

reflexive. Others results paralleling the known properties of /" spaces are

obtained under this additional hypothesis.

1. Definitions and preliminary results. The general terminology of this

paper is as in [9]. Throughout we will assume that the sequence spaces X

are normal and equipped with the topology y~b(?.x), unless we specifically

state otherwise.

For sequences x=(x¿), 7=(j¿) we denote by xy the sequence (x{y¡).

Using the notation of Ruckle [12], we denote by p'- the {u\ux e X for each
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x e p.}, where pi and A are sequence spaces. Since pix is a normal sequence

space, pxx=(pA)x has meaning. If pixx=pi, we say that pi is ?.-perfect. If

A=P, we use the standard terminology of [9] and write pi* for pix and say

that pi is perfect if pixx=pi.

Let x be the sequence (xt). We denote by xU) the sequence (_y¿), where

j¿=x¿ for ii£n, and ^¡=0 for />/..

Suppose A is a step and u and v elements in A. We may choose the norm,

||'||A, on A so that ||m|L=IML whenever IwJ^I^I for each i; see [1]. Also,

for A a step, Ax is a step (see [2]). We denote by Arthe {x e A|x(n) converges

to x in the ^(A^-topology}. Under our general hypothesis it is easy to

see that the topological dual of Ar is Ax. If A=Ar, we say that A is regular.

To eliminate some writing in the following sections we will always

mean that A is a step when this symbol is used.

As a final preliminary we give the following parallel of the definition

of/':
Definition. For A a step and 1 iSp<co, define Xv to be the {x| |x|"=

i\x<\')eX}.

2. Norming A". For x e A" we let \\x\\Xv denote the number (|| |x|p||A)1/:p.

We show in this section that ||-||A, defines a norm on Ap which is strictly

convex if A is regular. To simplify notation we let pi denote Ap.

2.1 Minkowski inequality.    If x, y e pi, then ||x+j„^ 11x11,,+ ||_y||p.

Proof.    Let  x, y e pi,  and  ueXx,  with   ||«||¿X^I.   By  definition,

|x|"eA; so lîli |w,-| |xi|"<co and (\u\1/p)(x) elp. Thus (|w|1/p)(x) and

(\u\1/v)(y) are in lp. Using the familiar Minkowski inequality for the second

inequality we have
(» u/p

2(i"//*(w + w))p)

(Ä W*
¿(ki^w + i^ny.irj

.= \2(\Ui\1/p\Xi\Y) + [ZWuiiy)

= {\u\,\xni/» + (\u\,\ynv»

uiWM'hf' + QWyl'WÙ1'9-

The last inequality follows since ||k||Ax = || |w| Lx. Hence

8Up{(K«,|*+^»>|J1/»|«6AX, ||W||,x^ 1}^ ||X|U+ \\y\\„,

and the conclusion holds.    D

Using 2.1 it is clear that (A", IHIa») is a normed space.

2.2 Proposition.    The norm of pi is strictly convex if X is regular.
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Proof. By way of contradiction assume the existence of a pair of

elements x, y in p with xj^y, IW|U= ll.yllu=l and ||£(*-r-.jOIU = l- Since
X=Xr, we have X'=Xx, and hence there is an element u in Xx with \\u\\?x = 1

and (u, \\(x+y)\v)= 1. It is clear that u may be chosen with uiz%0 for all /.

Thus

-eM?*tijr-£
= U((ulh)(x) + (u1/J,)(y))L.

lv is strictly convex, so \(uxlv)(x)\p or \\(u1/v)(y)\\p is larger than 1. As-

suming ||(a1/,')WI|,>l yields (u,\x\»)>l and ||jc||„>1.    D

3. Xv is a step which is /-perfect. Again for simplicity of notation we let

p = Xv andvF=X<>, where \jp+ \jq=\.

3.1 Holder inequality.    If x e p, z eW, then ||xz||A^||x||^||z||yf.

Proof.    For u e Xx, x e p, and z eT, it follows as in the proof of 2.1

that (Iwl^Xx) e lv and (\u\llq)(z) e l". Using the perfectness of X, it clearly

follows that xz e X.

Now assume ||h||Ax^1. Using the standard Holder inequality for the

second inequality, we have

œ /œ \l/í>/» \1/«

K«,xz)i ^2iw,i ^ 2(H1/pwn   2(w1/?N)°
¿=i m=i '     V=i '

= (|u|,|x|î')1/!'(|U|,|zr)1/a^l|x||J|z||4,.

The conclusion follows as argued in 2.1.    D

3.2 Lemma. If'z eY, then ||z||<,- equals the norm ofzas an operator from

p into X.

Proof. By 3.1 we have, for z eW, that z is an operator of p into X and

that the operator norm of z is no larger than ||z||T.

For the reverse inequality let z eT and a=|| |z|"||;. We have ||z||T=

(a)a/»=(a)(a-1/',)=|||z|<'/a1/3'll;.= ll(z)(|z|«/i>)/a1/p||/lgoperator norm of z,

since || |z|s/p/a1/"||M=l.    D

3.3 Proposition.   px=xF.

Proof. In [1] it is shown that pk is a step and that the norm of px is

equivalent to the norm for operators of p into X. For z £ px, |z¿n)|^|z¿| for

each /, so |]z<")ILJl=llzll/iJl for each n. Thus the sequence {zU)} is norm

bounded in px and thus is a bounded sequence in the operator norm.

Applying 3.2 and the fact that {z(n)}cT we have {z(n)} a norm bounded

sequence inT. Hence {|z<n)|s} is a norm bounded sequence in X implying

<»i")(f)+«")(f)7"
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that {|z(">|3} is ^S(XX, ^-bounded. Using the normality of Xx, the se-

quence (2?=i I "J IZfl*} is a bounded sequence of real numbers for each

u e XX. Thus iZi \»i\ \zi\"< °° and z e^-

The reverse inclusion follows from 3.1.    D

3.4 Theorem.    Xv is a step which is X-perfect.

Proof. 3.3 and the fact that Y' is a step show that Xv is a step. The

/-perfectness of Xv also follows from 3.3.    D

The following corollary parallels the result stating that (ls)l'=lr, where

l/r=l/r+l/i; see [13]:

3.5 Corollary.    (Xs)x'=Xt, where \jt=-\jr+\js.

Proof.    Xs=(Xt)slt and Xr=(Xt)rlt with tjs+tjr=\. The result follows

from 3.3 and 3.4.    D

The referee has observed the following generalized Holder inequality:

3.6 Corollary.   If \jt=\js+\jr and x e Xs, y e Xr, then xy e )} with

\\xy\\,^\\x\\A\y\\,r.

Proof. We need only check the norm inequality since the first con-

clusion is contained in 3.5. For xe Xs, y e XT it follows that |x|' e Xs/t and

\y\* e XT/t. Using the definition of the X' norm and 3.1 we have

\\xy\\,.= (Il M'y1" ^ [(II \x\'l,«)(\\ \yV\\^)r*
= ((Il \x\'\\ù*")llt{(l Lvl'lliW = IWU« IWU-   □

Remarks. 1. Essentially repeating the proof that a sequence space

v=vx if and only if v=l2 (see [9]), we have v=vÁ if and only if v=)?.

Proof.    One implication follows from 3.3.

Conversely, suppose v=vx, and let xev with x=(x¿). Then xx=

\x\2 e X, so vc A2. However, this inclusion implies ?2 = (X2)x<=vx = v.

2. In [3, §3], we find

Theorem. If v and £ are arbitrary perfect sequence spaces and £ is v-

perfect, then each absolutely v-summing map is absolutely ^.-summing.

It is observed in [3] that for v=/', £=/s, with 1 ̂ r5js:í co, the hypoth-

esis of this theorem is satisfied. Corollary 3.5 above shows that for

v=Xi and £=A5, \^t^s<cc, the above hypothesis is satisfied.

4. Diagonal nuclear maps and reflexivity of Xv. The two main objectives

of this section are to isolate the diagonal nuclear maps of / into Xv when

X is regular, and show that A", l</><oo, is reflexive when X is regular.

4.1 Proposition. Each diagonal map of Xv into Xs, \^s<p<oo, is

compact if and only if X is regular.
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Proof. If A is regular, it clearly follows that X* is regular, for 1 ̂ ¡*< oo.

In §3 of [1] it is shown that, for v and t, steps, the set of diagonal compact

operators of v into £ is represented precisely by the set (v%. The one

implication now follows from 3.5.

Conversely, suppose Xj±XT. There is then an x in A, x=(x¿), x¿^0, all

í, with x<n)-)-»xin the norm of A. Then for some £0>0 we have ||x—x('!)||;>

£0, for all ». By definition x1/5 e Xq=pix and ||xI/«-(x1/«)<n)||;.«=

(||x—xu,|L)1/*=(£o)1/4- Using 3.5 and the result from [1] used above we

have the conclusion.    D

The following lemma is a slight modification of 3.1 of [8]. For the

readers benefit we repeat the proof here using our notation.

4.2 Lemma. Let v and t, be steps both of which are regular. If all the

diagonal maps from v into t, are compact, then there is a projection

P:K(v, £)—>-vc for which ||P|| = 1. (K(v, Q denotes the space of all compact

maps ofv into t, and vç here means the space of diagonal matrices with diag-

onal from v{.)

Proof. Since v=vr, all continuous linear maps of v into t, can be

represented as matrices. Using the hypothesis that £=£r, we have that t,

has a Schauder basis and hence, by [14, p. 114], v'®t,=K(v, t,).

Let A = (ai}) e K(v, t,) and let x e v, u e t,x. xu, as a map of t, into v,

can be factored as Ç-W1—►ic0->xr where / is the inclusion map of I1 into

c0. It is known from [7] that /' is an integral map with norm <1. It is easy

to see that the operator norms of u and x are respectively \\u\\r* and

||x||v. Thus xu is an integral map of £ into v with integral norm less than

IMUNIç* (see [6]). Hence the diagonal matrix with diagonal xu is a con-

tinuous linear form on K(v, t) [14, p. 168]. This means that 2¿Li ûu*,«t<

oo, for each x e v, u e £x. vt,x is normal by 1.1 of [1]; so 2<li |fl.i*¿w.|<°o

for each xu evt,x. Thus (au) e (vt,x)x=vc (see 1.2 of [1]) implying that

the diagonal matrix with diagonal (ai{) is in K(v, t,).

By 1.5 of [1], the norm of vç can be chosen so that

\\(atí)U = sup
Í0O

2 anXiUi
¿=1

JjcL^i,||«||,x<i

^ (integral norm of (xu)) (operator norm of A)

iS (operator norm of A),

by the arguments above. Hence P:K(v, £)—>v^ given by P(A) = (a¿i) is the

desired projection.

In the context of the above lemma the beneficial conclusion for us is that

vl has a topological complement in K(v, t,), i.e. K(v, t,)=v'^t, = vl'©F

for some subspace F of K(v, t,). The hypothesis of the lemma and the
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result from [1], given above in the proof of 4.1, yield ^=(1^),. We now

have(K(v, £))'=./(£, vx) = (/)'©F = (/)'e.F'. Hence each element of

(vç)x is an integral map of £ into v (see [6, p. 126]). Analyzing the identi-

fications involved in the duality between K(v, £) and /(£, vx) it can be seen

that, for v e (vç)x, the operation of v as an integral map of £ into v is just

coordinatewise multiplication.

We recall a theorem of Grothedieck [6, p. 134]:

Theorem. Each integral linear map of a locally convex space E into a

Banach space F is nuclear, if F is separable and the strong dual of a Banach

space.

Using this theorem we can now obtain a result similar to, but not the

same as, 3.2 of [8].

4.3 Proposition. Let v and £ be steps which are regular and such that

each diagonal map ofv into £ is compact. Then a diagonal map uofl, into v is

nuclear if and only ifu e (v**)x. In addition, the nuclear norm ofu is equivalent

to the norm ofu in (vç)x, and (vç)x is regular.

Proof. Suppose u e (v^)x. From the above discussion we know that u

is an integral map of £ into v. By hypothesis v=vr so v is separable; v is

perfect, so v=((vx)r)'. u is a nuclear map of £ into v by the quoted

theorem of Grothendieck.

Conversely, it is proved in [12] that the diagonal of A is in ((rç)x)r, if

A is a nuclear matrix map of £ into v. Hence u e ((vç)x)r<= (rç)x whenever

u is a diagonal nuclear map of £ into v.

It is proved in [6, p. 179] that the nuclear norm agrees with the dual norm

from ÀY£, v). Thus by the above discussion the nuclear norm of « 6 (vç)x is

equivalent to ||k||(vC)x.

The regularity of (v?)x is clear from the earlier part of this proof.    C

The following corollary may be anticipated from Tong's result that the

space of diagonal nuclear maps of lv into /', for 15!/j<f<oo, is /s, where

\jp=\jt + (s-\)ls; see [15]:

4.4 Corollary. If X is regular, then the diagonal nuclear maps of Xv

into X\for \^p<t<co, are (XT)X, where \jp=\jt+\jr.

Proof.    Use 3.5 and 4.3.

Remark. It is shown in 3.4 of [8] that for f^p the diagonal nuclear

maps of Xp into ?J are just /*.

4.5 Proposition. Let v and £ be steps which are regular. Then each

diagonal map ofv into £ is compact if and only ifv1' is a reflexive space.



1972] classes of perfect banach sequence spaces 143

Proof. If each diagonal map of v into £ is compact then (vç)7.=vç, so

(„£)'== („i)X. By 4-3> (vÇ)x = ((vÇ)X)^ giving (,v^xy = vc

Conversely, if rç is reflexive, then ((rç)x)r is reflexive giving (vi)x=

((v^)x)T. Thus (vc)x is reflexive yielding (vç)r reflexive. Hence vç=(vç)r, and

each diagonal map of v into £ is compact.

4.6 Corollary.   For 1 <p < co, A" is reflexive if and only ifX is regular.

Proof. It is clear that A is regular if and only if Ae is regular, for

l^/<co. The conclusion follows from 3.3 and 4.5.

We conclude with the following problem :

If A is regular, are the diagonal A-nuclear maps of Ap into A', for 1 ̂ p<

t<ao, given by As, where l//?=l//+(j-l)/i? (See [10].)
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