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RANK THREE AFFINE  PLANES

MICHAEL J.  KALLAHER1

Abstract. A permutation group has rank 3 if it is transitive

and the stabilizer of a point has exactly three orbits. A rank 3

collineation group of an affine plane is one which is a rank 3 permu-

tation group on the points. Several people (see [4], [7], [8], [12])

have characterized different kinds of affine planes using rank 3

collineation groups. In this article we prove the following: Let si

be a finite affine plane of nonsquare order having a rank 3 collinea-

tion group which acts regularly on one of its orbits on the line at

infinity, si must be either (i) a Desarguesian plane, (ii) a semifield

plane, or (iii) a generalized André plane.

1. Introduction. A permutation group is of rank 3 if it is transitive and

the stabilizer of a point P has three orbits (including {P}). A rank 3 collinea-

tion group on an affine plane is a collineation group of the plane that is of

rank 3 when considered as a permutation group on the points of the plane.

The following holds:

Theorem 1. If sé is a finite affine plane of order n admitting a rank 3

collineation group G, then ¿é is a translation plane, n=pr for some prime p

and integer r 7± 1, and G contains the group of translations of ¿é'.

This was first stated by Higman [4] but a proof was given only under the

condition that G was transitive on the line at infinity. However G may also

have two orbits on the line at infinity; the proof for this case was given

with slight restrictions by Kallaher [6] and in full generality by Liebler [9].

Examples of rank 3 affine planes, besides Desarguesian planes, include

the Lüneburg planes [10], the nearfield planes [6], certain semifield planes

[7], certain generalized André planes [8], and the Hall planes [12]. Except

for the Lüneburg planes, in each of the explicit examples, the rank 3

collineation group given has the property that it induces a regular (sharply

transitive) permutation group on one of its orbits on the line at infinity /„„

of the affine plane.

Higman [4] proved that if the rank 3 collineation group G acts regularly

on the line at infinity then the plane is Desarguesian. Prohaska [12] gives
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the following characterization of the Hall planes : Let sé be an affine plane

of square order n=m2. sé is a Hall plane if and only if sé admits a rank 3

collineation group G having an orbit of length m+l on lx upon which G

induces a regular permutation group.

With these two results in mind, in this article we investigate planes with

rank 3 collineation groups having an orbit on ¡x upon which they induce

a regular permutation group. Our main result is:

Main Theorem. Let sé be a finite affine plane of order n with a rank 3

collineation group G. Ifn is not a square and G induces a regular permutation

group on one of its orbits on the line at infinity, then sé is one of the following

three types of planes: (i) Desarguesian plane; (ii) semifield plane; (iii)

generalized André plane. (See Corollary 3.1.)

Comparing this result with Prohaska's, it is reasonable to conjecture

that if « is a square, besides types (i)—(iii), the only other type possible is

(iv) Hall plane.

We assume the reader is familiar with the basic terminology, notation,

and theory of affine and projective planes as is contained in Dembowski

[3]. We will use /x to denote the line at infinity of an affine plane. We also

presume the reader knows the fundamentals of permutation groups as

contained in Passman [11]. In particular, by a group G acting regularly on

an orbit V we mean that Pcr=P, P e F and a e G implies a fixes every

point of T.

2. Preliminaries. Let sé be an affine plane of order « with a rank 3

collineation group G. By Theorem 1, sé is a translation plane and hence

n=pr for some prime/» and some integer r^.1. Furthermore G contains the

group T of translations of sé and thus G= TG0 where O is a point of sé.

This implies G and G0 induce the same permutation group on /x, the line at

infinity of sé. Also (Kallaher [6]) G, and hence G0, has the following

possible orbit structures on lx :

(I) G has one orbit on lK; i.e., G is transitive on lx.

(II) G has two orbits on ¡x.

(a) One orbit consists of one point and the second orbit consists of

the remaining points.

(b) One orbit consists of two points and the second orbit consists of

the remaining points.

(c) Both orbits have more than two points.

We will refer to these possible orbit structures in the rest of the paper.

Note that all four possibilities actually occur in non-Desarguesian planes.

Lemma 1. If sé is a finite affine plane of order n with a rank 3 collinea-

tion group G which has an orbit structure of type (II) on the line lœ, then for a
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point O of sé:

\G0\ = k(n-\)\G0,n\,       ReZi,

('} \G0\ = l(n - 1) \G0.Q\,        ßeS2,

where k + l=n+\ and Y,x, S2 are the nontrivial orbits of G0 in sé.

Proof. G having two orbits on lœ implies G0 has the same two orbits

on lx and thus G0 is not transitive on the lines through O. This implies

that if / is a line of sé through O, then the points of sé not equal to O and

lying on / must all belong to exactly one of the orbits 2,, 22 of G0. Let

S¿ be the set of all lines through O whose points belong to 2¿, z'=l, 2,

and let T={lnlx\leT.x}, A={lnl00\le S2}, |r|=Är, |A|=/. Then k+l=

n+l, \2Zi\=k(n-l), |E,| = /(«-l). Equations (2.1) follow.

If the rank 3 collineation group G induces a regular permutation group

G on one of its orbits, say T, then for a point P e F we have G1>=GV.

Since the permutation group G induced on T by G is isomorphic to GjGT,

we have GP is a normal subgroup of G. This gives:

Lemma 2. Let sé be a finite affine plane of order n with a rank 3 collinea-

tion group G. If G induces a regular permutation group on one of its orbits of

lx and P is a point of that orbit, then G¡, is normal in G.

A special group which we will have use of is the group T(pr). This is

defined as follows:

Definition. Let p be a prime, r an integer ^ 1, and let V be the additive

group of G¥(pT) considered as a vector space over G¥(p). T(pr) is the set

of all linear transformations of the form x-+x°a, where a e G¥(pr), a¿¿0,

and cr is a field automorphism of G¥(pr).

Note that T(pr) = AM, where A is the subgroup of all mappings of the

form x-+xa, o is a field automorphism of G¥(pr), and M is the subgroup

of all mappings of the form x-*xa, a e G¥(pT) and a#0. We will need the

information about T(pr) contained in the next lemma. By a p-primitive

divisor of pr— 1, p a prime, we mean a divisor of pr— 1 which is relatively

prime to ps— 1 for every positive integer s less than r.

Lemma 3. Let G be a subgroup of T(pr) and let M be the subgroup of

T(pr) consisting of mappings of the form x-^>-xa, 0#a e GF(pr). If u is a

prime p-primitive divisor ofpr— 1 and H is a u-subgroup ofG, then H^GnM

is a characteristic cyclic subgroup of G.

Proof. If a is an automorphism of G¥(pr), the order of the mapping

x^-.v"a is a multiple of the order of a. If cr^ 1, then a has the form x—*xp',

s<r, and the order of a divides r. If the order of the original mapping

is some power of the prime u, then u\r. Thus r=ut. On the other hand,
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since « is a prime, pu~1 —1=0 (mod u). Since u— l<r we have a contra-

diction to the fact that m is a /,-primitive divisor of pr— 1.

Hence every element of G whose order is a power of u belongs ioGr\M.

G(~\M cyclic implies GC\M contains a unique (cyclic) subgroup of order k

for every k dividing \GC\M\. This gives the lemma.

3. The basic result.   In this section we prove the following theorem:

Theorem 2. Let sé be a finite affine plane of order « 5¿ 26,34 with a rank 3

collineation group G.IfG induces a regular permutation group on one of its

orbits on lx having length greater than 2 and for a point P of this orbit Gv

is solvable, then sé is a Desarguesian plane.

Proof. By Theorem 1, n=pr for some primep and some integer r_^ 1,

sé is a translation plane, and G=TG0, where O is an affine point of sé

and T is the group of translations of sé. Furthermore G and G0 have the

same action on the line lx. Let V be the orbit of G (and hence of G0) on lx

upon which G (and G0) acts regularly.

If T is all of lx then the theorem follows from the Corollary in Higman

[4]. Hence we may assume G has two orbits on lx ; let A be the second

orbit on lx. If k=\T\ and /=|A|, then k+l=pr+l.

If Pis a point of lx then G0 ¡, is transitive on the points of OP other than

O and P (proof of Lemma 1). By a proof analogous to that for Lemma 1 of

[7], G 0l> induces a group G of linear transformations on (Q, +) (where

Q is a quasi-field coordinatizing sé with P as the point (co) and O as the

point (0,0)) considered as a vector space over GF(/?). Note that GOP,

P eT, contains no perspectivities with axis OP since G0 acts regularly on

T and |F|>2. Thus G0,¡> is isomorphic with G, a subgroup of GL(r,p).

We break the proof up into three cases:

Case I. pr=22, 52, T, ll2, or 232. If/>r=32, then sé is Desarguesian

since the only non-Desarguesian translation plane of order 9 is the near-

field plane of that order (Dembowski [3, p. 196]) and that has no collinea-

tion group with the prescribed properties. The arguments for the cases pT=

52, 72,112,232 are similar, so we will give the argument for/?r=52 and leave

the others for the reader.

Since G0 p, P e F, is isomorphic to a group of linear transformations

on a vector space of dimension 2 over GF(5) we can think of G0 ,, as a

subgroup of GL(2, 5) which has order 480=5- 3 • 25. Since |C7OP| =

24 • \G0R\, R an affine point on OP, \G0Jt\ |20. If Q is an affine point such

that OQr\lx e A, then the group G0 0 may contain homologies with axis

OQ. Such homologies must also have their center in A. Hence, if HQ is the

group of homologies with axis OQ, then \G00\ |.¥q|-1|20. Note also that

if a e HQ, a fixes no points of V.
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From (2.1) we have

|G0| = 24-*-|G0>K| = 24-/-|G0.0|,

where R and Q are affine points such that ORnlœ e Y, OQnl^ e A, and

Jt-f-/=26. If/|A: thenrV=/=13. Let P be a point of T, g a point of A, and

let 0 be the orbit of Q under G0 P. Since GOP is normal in G0 (Lemma 2)

all orbits of G0 P in A have the same length and thus |<D| |13. On the other

hand |<D| | |G0,P|. Since \G0 P\ ¡480, this implies |<D| = 1. Thus G0iP fixes

every point of A. Since it also fixes every point of Y, G0P consists of

(O, /œ)-homologies. Thus sé has at least 24=52— 1 (O, /œ)-homologies

and this implies sé is Desarguesian (Dembowski [3, p. 132]).

Assume ¡Jfk and let d=g.c.d.(l,k), l=ud, k=vd. Then w| \G0 R\,

v\ |G0>0|. Thus u\20 and v\20\HQ\. If «=1, then k=25 and this implies
G0P contains 24 (O, /^j-homologies which implies sé is Desarguesian.

u#20 since this would imply /=40. We consider the other possible values

for u and show that in each case a contradiction arises.

If k=2, then d=2, 1=4, k=22, v=U. Since 11^20 we have ll| \HQ\.
But then sé would possess a homology of order 11 fixing exactly two points

of A and interchanging the other two points—a contradiction. If m=4,

then v=9 and thus 9| \HQ\ which leads to a contradiction since |A| = /=8.

If u=5, then either /=5, d=\ or /=10, d=2. For the first possibility

r=21 which implies 211 \HQ\ and sé would have a homology of order 7

with axis OQ fixing two points of A and permuting the other three—a

contradiction. For the second possibility /=10 implies 5| \G0pi?| and hence

120| \G0P\, P e T. G0P is isomorphic to a subgroup G of GL(2, 5). If

r¡:GL(2, 5)->-PGL(2, 5) is the natural homomorphism, then the group

GíjnPSL(2, 5) has order divisible by 15 and is solvable (since G0P is).

But no solvable subgroup of PSL(2, 5) is divisible by 15 (Huppert [5,

p. 213]).
If «=10, then /=20 and 240| |G0-i,|, PeY. Arguing as in the case

u = 5, /=10 we get the same contradiction.

Case II. r=2 and p=2x-1 for x=4. By Passman [11, Theorem 19.9]

G, and hence G0P for Pelx, is isomorphic to a subgroup of T(p2).

|G0.p|-=(^*-l)|Go.Ä|, R an affine point of OF, and \T(p2)\=2(p2-l).

Hence \G0R\ \2.

If k=\Y\, /=|A|, d=g.c.d.(k, I), l=dl1,k=dk1, then from (2.1) we have

hi |Co.fil.*i| \°o.qV \f Ix=2, then l=2dand \G0\=2(p2-\)k=2d(p2-\).
Hence ^ = 1. Thus 3d=p2+l, p2=-\ (mod 3). But p2=\ (mod 3) for

every prime p. Hence lx=\. If kx=2 we obtain the same contradiction.

Hence ^=1 and l=k=\(p2+\).

G0 p, PeY, acts as a permutation group on A (not necessarily faith-

fully). Let Q e A and let O be the orbit of Q under G0 P. Since GOA, is
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normal in G (Lemma 2), all orbits of G0P in A have the same

length and thus |0| \l=\(p2+\). On the other hand, |0| | \G0P\ and

g.c.d.(2(p2—I), \(p2+l))=l. Hence 101 = 1 and G0 P fixes every point of

A. This implies G0 P consists of (O, /„J-homologies (since G0 P fixes every

point of T) and therefore sé is Desarguesian since it possesses (p2—1)

(O, /œ)-homologies (Dembowski [3, p. 132]).

Case III. We now complete the proof of the theorem. Because of Cases

I and II we may assumepr7¿32, 52, 72, ll2,232and if r=2,p^2x— 1. Again

by Passman [11, Theorem 19.9] for a point P e lœ, G0 P is isomorphic to

a subgroup of T(pT). Let u be a prime ^-primitive divisor of pT— 1 (u exists

since pT5e26, and if r=2, p^2x— 1; Birkhoff and Vandiver [1] or Zsig-

mondy [14]). G0 P has a unique subgroup H of order u which is cyclic and

characteristic in G0 P (Lemma 3). GOP normal in G0 (Lemma 2) implies

H is normal in G0 (Schenkman [13, p. 84]).

Let a be an element of H, cr^l. The fixed points of a and H on lx are

the same. Assume first that a, and hence H, fix no points of A. Then

|o-| = «|/=|A|. From (2.1) we have u\ |C70.äI» s'nce ujfpr+l implies u)fk=

(pT+l) — l. Thus, if ua is the highest power of u dividing pT—\,

"a+1| \Go.p\> PeT. But G0 p is isomorphic to a subgroup of T(pr) and

\T(pT)\=r(pr—l). Since u)fr (see proof of Lemma 3), ua+1J(r(pr— l)and we

have a contradiction. Thus o, and hence H, must fix a point of A.

Since H is normal in G0, H must fix every point of A. Therefore H

consists of (O, /^j-homologies since H fixes every point of Y (H is a sub-

group of G0 P). But then, |//|=w| \K\, where K is the kernel of sé. Since

\K\=ps—l for some s<r (Dembowski [3, p. 132]), and u is a /»-primitive

divisor of pT— 1, s=r and \K\=pr— 1. Hence j/ is Desarguesian.

4. Proof of the Main Theorem. Our Main Theorem will be a corollary

of the following theorem :

Theorem 3. £<?f sé be a finite affine plane of order « with a rank 3

collineation group G. Assume njà52, ll2, 232, 26, 34, and «#(2X— I)2 for

some x^.3.IfG acts regularly on one of its orbits on lx and for a point P of

this orbit GP is solvable, then sé is either (i) a Desarguesian plane, (ii) a

semifield plane, or (iii) a generalized André plane.

Proof. By Theorem 1, sé is a translation plane, n=pT for some prime

p and some integer r^ 1, and G= TG0, T the group of translations of G

and O an affine point of sé. Furthermore G and G0 induce the same

permutation group on /œ. Let V be the hypothesized orbit of G0 on /œ. If

|T|>2 then, by Theorem 2, sé is Desarguesian. Thus we may assume G0

has either the orbit structure (Ha) or the orbit structure (lib) on lx (see

§2). We consider each case separately:

Case I.    G0 has orbit structure (Ha) on lx. We shall show that in this
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case sé is either a semifield plane or is Desarguesian. Either |T| = 1 or

\Y\=pr. If it is the latter then, by Theorem 2, sé is Desarguesian. Assume

|r|=l. Then, by Corollary 5.1 of Kallaher [7], sé is a semifield plane.

Case II. G0 has orbit structure (lib) on /œ. We shall show that sé is

either Desarguesian or a generalized André plane. Either \Y\=pT— 1 or

|T|=2. If T has lengthpr—l then, by Theorem 2, sé is Desarguesian.

Assume |T|=2. By our assumption on n=pr, pT—\ has a prime p-

primitive divisor. Furthermore |T| = 2 implies that, for F e Y, GP has index

2 in G. Hence GP solvable implies G is solvable. By Theorem 4.2 of Kallaher

and Ostrom [8], sé is a generalized André plane.

Corollary 3.1. Let sé be a finite plane of order n with a rank 3

collineation group G.Ifn is not a square and G acts regularly on one of its

orbits on the line at infinity, then sé is either (i) a Desarguesian plane, (ii)

a semifield plane, or (iii) a generalized André plane.

Proof. Let Y he the orbit on lœ upon which G acts regularly. If |T| = 1

the theorem follows from Kallaher [7]. We therefore assume |L|>1. We

wish to apply Theorem 3. Because n is not a square, the hypothesis in

Theorem 3 concerning n is satisfied. Let F be a point of Y and Q another

point of T. Then GP=GP Q since G acting regularly on Y implies GP fixes

all points of T. By Burmeister and Hughes [2, corollary, p. 182] GP Q is

solvable. Thus the corollary follows from Theorem 3.
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