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AN APPROXIMATION THEOREM FOR INFINITE  GAMES1

MICHAEL ORKIN

Abstract. We consider infinite, two person zero sum games

played as follows: On the nth move, players A, B select privately

from fixed finite sets, A„, Bn, the result of their selections being

made known before the next selection is made. A point in the

associated sequence space Cî=T~[n=x (AnxBn) is thus produced

upon which B pays A an amount determined by a payoff function

defined on Í2. We show that if the payoff functions of games {G„}

are upper semicontinuous and decrease pointwise to a function

which is the payoff for a game, C, then Val(Gn)|Val(C). This

shows that a certain class of games can be approximated by finite

games. We then give a counterexample to possibly more general

approximation theorems by displaying a sequence of games {C„}

with upper semicontinuous payoff functions which increase to

the payoff of a game C, and where Val(C„)=0 for all « but

Val(C)=l.

Introduction. Infinite games with imperfect information have been

studied by several writers, notably Blackwell [1], [2], Gillette [3], Milnor

and Shapley [4].
Before proceeding with the main result we will introduce notation and

describe the structure of these games.

Let {An}, {Bn} be sequences of nonempty finite sets. Let Zn = AnxB„

and let Q be the space \~[n=i Zn of infinite sequences co=(zx, z2, • • •) where

z„ eZn. Let X={(zx,z2, • • • , zj|z¿ eZt, n=l, 2, • • •} be the set of finite

starting sequences or partial histories.

Suppose/is a bounded Baire function on Q. (with respect to the product

topology). Then/, called a payoff function, defines a zero-sum two person

game Gf, played as follows:

First, player A selects ax e Ax while player B simultaneously selects
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bx e Bx. The result, zx = (ax, bx) eZx, is announced to both players, upon

which A selects a2 e A2 while B is selecting b2 e B2, etc. The result of this

infinite sequence of moves is a point œ = (zx, z2, ■ ■ ■) e £¿ and B pays A

the amount f(w). For any partial history xeJwe can define a subgame

of the original game (usually referred to as the original game, "starting

from x") by having the players play as above except redefining the payoff

function asfx(oj)=f(xa>).

A strategy ol (ß) for A (B) gives for each partial history x (of length n,

say) a probability distribution on An+X (Bn+X) with the stipulation that if

the current position is x, A (B) will make his next choice according to

a (ß). A pair of strategies, (a, ß) defines a probability distribution, Pxß on

O and, hence, an expected payoff to A in Gf when A uses a and B uses ß:

E(f, «, ß) -J/(<») dPxß(o>).

(We will usually omit the a, ß from the notation when it is clear what is

happening.)

The lower and upper values of Gf are, respectively,

L(Gf) = sup inf £(/, a, ß),       V(Gf) = inf sup £(/, «x, ß).
x        ß ß       a

It is always true that L(Gf)^U(Gf); if L(Gf)=U(Gf), this common value

is called the value of Gf and will be denoted by \a\(Gf).

Finally, a payoff function / is called upper (lower) semicontinuous if

ft)„—w=>lim sup„/(co„)^/(w) (lim inf„ /(«„)>/(«)).

The result of [5] we will use is as follows. Let M be compact, N any

space,/defined on MxN which is concave-convexlike. Iff(p, v) is u.s.c.

in p for each v, then supM infv/=infv sup„/. We show how to apply this to

the present situation: The space of plays, Q, and the set of strategies for

each player gives rise to a product of compact spaces, Q*xi2#, where

^A=Yln^At, û/*=n?=i *ï- We define A*' B* as follows: If a is a
strategy for player A, the corresponding member of Q* is a sequence

(ocj, a2, • • • , a„, • • •), where aK e /I* is a finite list of probabilities on An,

one for each possible past history (the list is finite since the sets A„, Bn,

n= 1, 2, • • • , are finite). B* is defined analogously. The corresponding

product topology makes O*, Q% compact. If/is a payoff on Q, we get a

corresponding payoff/* on Í2_*xí2¿> by defining /*(<x, p) = E(f, a, /3).

If/is u.s.c. on Í2, so is/* on Q* xQjy (in the product topology); also/* is

linear, so [5] applies. It is easily seen that supa inf^/*=infi supaf*

implies the game with payoff/has a value, so [5] gives us that games with

u.s.c. payoffs have a value.
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We shall now prove the main result, namely

Theorem 2.1. Suppose G1 are games with upper semicontinuous

payoff functions fn, where the fn are (pointwise) noninci-easing, fn\f (which

is, therefore, also upper s.c). Then Val(G/)=limnVal(G/n).

We first prove a lemma.

Lemma 2.1. Suppose fn, f are as above. For any partial history x, let

mx=limn Walx(Gf ), where Na\x(Gf ) means the value of the game with

payoff /„, starting from x. (The value of games with upper s.c. payoff

function exists, by [5].) Let G* be the one move game which starts at x and

has payoff g=my if y is the next position hit. Claim Val(G*)^.mx.

Proof of lemma. We will show by contradiction that for fixed

£>0, A can play in G* to guarantee that E(g)^.mx—e. Assume not; then

for every strategy of A, player B can play to make E(g)<mx—E.

For each possible next position, y¡, i—1,2, • ■ •, k, let/n. be such that

Valj,.(G/n )<m7J.-|-<s/2. Let m=max!(ni); so that for all i,

(1) Va\y(GfJ < mVi + eß.

Now for any fixed strategy of player A, let B play according to the assump-

tion, to make E(g)<mx — s and then play eß optimally in Gfm to make

k k

E-xVJ Ú 2 piyù^KÂGfJ +eß<2 Ky.K, + £   (by (1))
¿=l i=l

= £(g) + £ <mx

(by assumption) which contradicts the fact that mx=limn Nalx(Gr ), and

the lemma is proved.    D

Now we are ready for the

Proof of Theorem 2.1. We shall show that for fixed £>0, A can

guarantee that £(/)^lim„ Val(G/n)—e=me — e (where e denotes the

empty sequence). This will complete the proof, since {Val(G/n)} is a non-

increasing sequence, and so U(Gf)^limn Val(G/n).

First, let A play optimally in Gf, and then, if xn is the position after

the «th move, let A play optimally in G*n. Define the random variables

X0=me; if «^1, Xn=mXn if xn is the position after the first n moves. By

the lemma, we have E(Xn\Xn_x ■ ■ ■ X0)~^.Xn_x=>

(2) E(X„) ^ me

for all n.
Now, using the usual facts about upper semicontinuity, for fixed k

(if z=(z1, z2, • • •)  is  the  resulting  sequence of moves), there  exists
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JV(iiZ_e) such that if n>Nikzt), any sequence œ=(œ1, <w2, • • •) agreeing

with z up to the nth move has the property

/*(«>) </*(*) + £=> Val(2j,Z2,...,2n)(G/t) <fk(z) + e

=>™<Zl.z2,....2„><A00 + s

=> for all 2,   lim sup„ Xn(z) <fk(z) + s

=> (by Fatou)   lim sup„ E(Xn) < E(fk) + e

=> E(fk) > me — s   for all k

^E(f)>me-e

(by the dominated convergence theorem).    □

Corollary 1. ///„ are lower semicontinuous, fn \f, then limn \a\(Gf )=

Val«?,).

Proof. The negative of an u.s.c. function is l.s.c. so the theorem

applies by reversing the roles of the players.

Corollary 2. Games with lower semicontinuous payoff functions can

be approximated by finite games.

Proof. Suppose / is l.s.c. Define /„ by fn(v)=infmf¡sf(ü)) where

S={co e O [ist n coordinates of co agree with the 1st n coordinates of v).

Then the games Gfn are "finite", since the payoff is decided in the first n

moves. But the fact that/is l.s.c. implies/, If, so we just apply Corollary 1.

(The functions/, are continuous.)

Corollary 3. Open games can be approximated by finite games, i.e.,

iff=Ie where (9 is an open set (in the product topology on Cl) then the game

G can be approximated by the games Gn, where the payoff in Gn is 1 if &

is hit by the nth move, 0 otherwise. (This is actually a special case of

Corollary 2.)

Proof.    Immediate since Ie is l.s.c.

A Counterexample. Approximation theorems do not exist in general

as the following example shows. Let An=Bn = {0, 1} for n=\, 2, ■ ■ ■ , so

Q = nSU {0, l}x{0, 1}. Let Sn=FnvG where Fn = {co gQ|H/</i with

o>i—(\, 1)} (in other words Fn = {co|both players say 1 on the same move

sometime before the «th move}), and G={a> e Q.|player B says 0 on every

move}. Clearly Fn and G are closed sets, so the functions ISr¡ are upper

semicontinuous. Now the games G„ with payoffs ISn have value 0 since

player B need only say 0 for the first n moves and 1 sometime after that

to keep play from hitting S„. Also since Sn+x=>Sn for all n, Isnlls where

S=\Jñ=iS„. But the game with payoff Is has value 1 which player A
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can achieve by merely saying 1 on every move. Player B either must say 0

every time or 1 sometime and so S is hit.

An open question. We do not know whether if /„ are continuous,

fn—*f, then Val G(F„)->Val G(F). This question has some relevance to

the study of stochastic games (see [2], [3]).

I wish to express my gratitude to David Blackwell for many helpful

conversations during the course of this research.
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