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Abstract. If (1 IK)—(I/aO forms an absolutely convergent

series, then {exp(ihnx)} and {exp(i/i„x)} have the same complete-

ness interval. This follows from a new formula for the completeness

radius which is simpler than the well-known formula of Beurling

and Malliavin.

1. Summary of results. Throughout this note X={ln) and p — {pn)

are sequences of complex numbers none of which is zero. As in [1], I(?.)

denotes the completeness interval of {eu"x} and E(X) denotes the Lv excess

on that interval. The quantities I(p) and E(p) are similarly related to {¡xn}.

In [1] it is shown that

(1) 2 \K - Pn\ < °° => E(X) = £(/*).

Here we are going to show that

(2) 2 J__J_ < co => I(X) = l(fi).

This was conjectured by the author in a seminar at the University of

California at Los Angeles (April 1961), later set as a research problem [4],

and finally announced as a theorem [6].

Since (1) is easy to establish, it might be thought that (2) is also easy.

However, (2) is deep; the appearance of simplicity is deceptive. We shall

sketch a proof that (2) is equivalent to a theorem of Beurling and Malliavin,

in the sense that either can be deduced from the other. An independent

proof of (2) would therefore give a new solution to the completeness

problem. In this connection it is interesting to note that (2) implies, as a

special case,

(3) S  f   < oo => 1(X) = 0.

Direct proof of (3) is trivial [5].

Received by the editors July 26, 1967 and, in revised form, December 10, 1968

and July 3, 1970.
AMS (MOS) subject classifications (1970). Primary 42A64; Secondary 30A08, 30A66.
1 The preparation of this paper was supported in part by NSF Grant GP-13377.

(c, American Mathematical Society 1972

116



two consequences of the beurling-malliavin theory      117

Equation (2) follows from a somewhat novel form of the completeness

criterion. We say that the positive number c belongs to X if there exists a

sequence {vk} of distinct integers such that

(4) 2
_c_

< co.

It is shown below that the set of all c belonging to / is a semi-infinite

interval of the positive real axis. Let the left-hand endpoint be denoted

by D(X), so that Z)(A)= co if no c belongs to X, otherwise

D(a) = inf c | c belongs to X.

Our completeness criterion is

(5) I(X) = 2wD(X).

The "two consequences" referred to in the title are (2) and (5).

If the series (2) converges, then any c belonging to X also belongs to ¡i,

and vice versa. Hence (5) implies (2). Most of the rest of this paper is

devoted to the proof of (5).

2. Some results of Beurling and Malliavin. The Beurling-Malliavin

solution of the completeness problem for real sequences depends on a

certain exterior density, Ae(dpi), whose definition [2] is too long for

inclusion here. To extend this to complex sets satisfying

(6) 2 Im 1
A„

< °o,

Beurling and Malliavin consider the mapping taking Xn into A*,

A*        2 U„        /„/

The Beurling-Malliavin completeness criterion is then

(8) /(A) = 2irAe(dA*)

where A* is the (signed) counting function for {A*} = A*.

Since (6) is obvious if any c belongs to A, the result (5) is equivalent to

the assertion that

(9) Ae(dA*) = D(X).

Equation (9) has interest apart from the objectives of this paper, since the

exterior density Ae(dA*) is connected with deep properties of harmonic

and entire functions [2].
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Direct proof of (9) is by no means an easy task. However the early work

of Beurling and Malliavin contains another completeness criterion which

is more tractable. Let X„ be real and have counting function A(u). Consider

all functions h(t) such that

no)      nA(t)-h(t)idt<co, o^oí«.
J-x t

The effective density, B(X), is defined to be the inf of all c for which such an

h(t) can be found. If there is no such c, then B(X)= co. With these defini-

tions,

(11) I(X) = 2trB(X),   Areal.

This result is an early form of the Beurling-Malliavin theorem. Although

it was not published officially by them, an account of it has been given by

Kahane [3], and further insight into the relation of B(X) and Ae(dA) is

given by Lemma II.2 of [2]. It will be found that (5) follows with ease

from (11).

3. Proof of the completeness criterion.2 As already noted, we can

assume (6), since in the contrary case no c belongs to X and (5) gives the

correct result, I(X) = oo. By (6) and (7), any c belonging to X belongs to X*

and vice versa. Since the work of Beurling and Malliavin establishes

I(X)=I().*) under the hypothesis (6), we can assume that X is real.

Lemma.    Let {A„} be a real sequence with counting function A. Then the

following statements are equivalent :

(i) c belongs to X;

(ii) equation (10) holds for some h.

We first show that (ii)=>(i). If (10) holds we can approximate the curve

y=h(t) by the counting function, M(t), for a sequence of the form {vjc}

where the vn are integers. Convergence of the integral in (10) makes

A(t)=0(t), since A is increasing, and partial integration gives (4). This

shows that c belongs to X.

To show that (i)=>(ii), let c belong to / and set p.n=vjc, so that the

series (2) converges. It may happen that some positive A's have been

correlated with negative ¡fs and vice versa. However, the hypothesis

makes (3) hold for such terms and hence we can drop the corresponding

set of X's and ¡x's without affecting completeness. That being done, the

series consists of a sum in which both Xn and ¡in are positive, together with

2 The original proof [6] has been revised somewhat, following helpful suggestions

of the referee.
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another sum in which both are negative. It suffices to consider the former

only.

Since statement (i) is invariant under permutation of the A's we may

assume A„+1^A„. The elementary inequality

+ !

X'
+

i

holds for 0<A^A' and 0<pi^pi', and shows that we may also assume

i"n+ll^rV

Suppose now that, for some u>0, A(u)—M(w)>m>0, where M(u)

is the counting function for pi. In this case

2
keS

1 1

,=o V"      « + jjcl

fc = -.ctof(l + Ä)+Op)
« \       cul \u!

where S is the set of indices k for which Xk^u and pk>u. A similar

calculation can be made if A(u)— M(u)^—m<0 for some u. The two

calculations together show that convergence of the series (2) makes

mju-+0 as u—»-co, that is,

(12)      2 j_     j_
A*     fa

< oo => A(u) — M(u) = o(u),       u -*■ oo.

In order to get estimates for \A(u)—M(u)\ it is convenient to distinguish

the terms of the series in which Xn^pn from those in which Xn>pn. We

consider the former only. The sum is over a set of indices mn rather than n,

but for ease of writing we use Xn instead of Amn and similarly for p. Thus

the series has the appearance (12) with the additional condition Xn^pn.

Since An and pn increase with n,

y n_J_\      f *• dMt) _ f «» dMi(t)

¡fc=l  W       flj       Jo t Jo t

where Ax and Mi pertain to the subsequences {Xn} and {pn} being con-

sidered now. With u=Xn and v=pn, the above result can be written

C» dAx(t) - dMx(t) Jt _ r dMx(t)

Jo t ]u t
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Since M(t)=0(t) by inspection and A(t)=0(t) by (12), partial integration

gives

j- dAx(t) - dMx(t) dt = f- Al(Q - Ml(t) df +

Jo r Jo í2

The second term of (13) is 2 UA"*) for fik on the interval (w, v). We show

that this term is also 0(1). Indeed, if the number of terms in this sum is m,

a calculation similar to (12) gives m¡u = 0(l). Since /uk^u we have, for the

terms in question, 2 0//40=STO/")=#(!)•
By the above estimates,

f" \Ax(t) - Mx(t)\       ^
(14)-dt < oo.

Jo Í

A similar discussion can be given for the terms of the original series in

which Xn>ptn and, in fact, this case is somewhat simpler. The result of

the analysis is that if the counting function of these A's is A2(i) and the

counting function of these p's is M2(t) then the integral (14) for A2—M2

converges. Since

A(0 = A,(/) + A2(i),        M(t) = Mx(t) + M2(t)

it follows that

|A(f)-M(t)| „   .
-:-dt < oo.

r

The lower limit can be taken as — oo rather than 0 because a similar

calculation could have been made for the terms with Xk<0 and pk<0.

The counting function M(t) for the sequence {vjc} can be approxi-

mated within 1 by a curve y=h(t) such that 0^/i'^c. This shows that

(i)=>(ii). In view of the lemma, B(X)=D(X) for real X, and hence (5)

follows from (11).

4. Concluding remarks. It was stated above that the set of c belonging

to A is a semi-infinite interval of the real axis. In other words, if a belongs

to A, and b>a, then b belongs to ?.. For proof, since b>a every interval

[k¡a, (k + l)¡á\ with k integral contains a number of form jjb. This means

that, given the sequence {vn} associated with a, we can find another

sequence of distinct integers, {a„}, such that \vJa-oJb\Klja. Multipli-

cation by ab\vnon and use of |o-„|/6^|rJ/fl— l\a give

a_ _b_
< —^-        (W5¿1).

VnO„ \vn\(\v„\   -   1)
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If we sum on n the resulting series is, essentially, a rearrangement of a

subseries of the absolutely convergent series 2 (ajn(n— 1)). Since

a_
+

b_

it follows that b belongs to A.

It was stated above that a proof of (2) would solve the completeness

problem, and we shall show why this is so. From (2), (6) and (7) follows

I(X)—I(X*) and thus (2) reduces the completeness problem to the problem

of real sequences. For real sequences the inequality I(X)^.2trD(X) is

elementary; it follows from the well-known fact that

,.., IO,s,   ,.    . rA(x„ + y„) - A(xn)
(15) ¡(á) ^ 2-7T hm inf-       (/. real)

where (x„, xn+y„) are nonoverlapping intervals such that

(16) 2©'—    = oo.

This is an easy theorem of Beurling and Malliavin, also found independ-

ently by the author; a simple proof is given in [5]. In fact, in the presence

of (2) we need establish I(X)^.2ttD(X.) only for sequences X={vnjc) which

satisfy a separation condition, A„+1—A„^l/c. For such sequences (15)

is even easier [5].

Suppose, then, that 0<c<Z)(A), where A is real. We want to use (15)

to show that /(A)^27rc. The first positive zero, Xx, is denoted by xx>0

and we consider a line of slope c through (x1; 0). If the horizontal part of

the graph of A(w) does not intersect this line for u>0 then lim inf A(u)ju^.c

as u—*oo and I(X)^.2ttc is trivial. We can suppose, then, that the first

"horizontal" crossing point is at xx+yx. Since Z)(A)>0, clearly A is infinite

and so there is a zero beyond xx+yv The first such is denoted by x2. A

line of slope c is drawn through the point (x2, A(x2—)), and the next

intersection of this line with the horizontal part of the graph of A(u) is

x2+y2. Continuing in this fashion we get a set of nonoverlapping intervals

(x„, xn+yn) such that A(xn+yn)-A(xn)=cyn.

Let ¡u be constructed by taking all numbers of the form vjc, where vn

are integers, on the semiclosed intervals [x„, xn+yv). Then for Xn and pn

on this interval the term

f*n ^nP-v.
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has the order of magnitude yn\x\. The number of terms is of the order yn,

and hence if the series (16) converges, the corresponding series for w<0

must diverge. (Otherwise c would belong to A, contradicting the hypothesis

c<D(X).) Equation (15) therefore gives I(X)^.2wc, which implies I(X)^.

2ttD(X).

Thus the main depth of the completeness problem consists in showing

that I(X)^2nD(X). However, this follows from (2) almost by inspection,

and indeed, for complex as well as real A. If ptn=vjc, where the vn are

distinct integers, then the function sin trzc vanishes at pin, and hence

I(p)^2tTC. Equation (2) gives I(X)=I(p,)^2Trc whenever c belongs to A,

and therefore /(A)^2.r£>(A).
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