ON THE INDIVIDUAL ERGODIC THEOREM FOR POSITIVE OPERATORS

RYOTARO SATO

ABSTRACT. A theorem which gives a condition on a positive linear contraction on an L¹-space in order that the individual ergodic theorem hold is proved. The theorem contains a result obtained by Y. Ito as a special case.

Let (X, \mathcal{M}, m) be a σ -finite measure space and let T be a positive linear contraction on $L^1(m)$. Let $a_{n,j}$ be a matrix of numbers such that

(1)
$$\sum_{i=0}^{\infty} |a_{n,i}| < \infty \quad \text{for } n = 0, 1, \cdots,$$

(2)
$$\lim_{n'} \sum_{i=0}^{\infty} a_{n',i} = 1,$$

(3)
$$\lim_{n'} \sum_{j=0}^{\infty} a_{n',j} b_{j+1} = b$$

whenever b_0 , b_1 , \cdots is a bounded sequence of numbers for which $\lim_{n'} \sum_{j=0}^{\infty} a_{n',j} b_j = b$ exists and is finite, where $\{n'\}$ is a subsequence of $\{n\}$. Under these conditions we shall prove the following

Theorem. If there exists a strictly positive function h in $L^1(m)$ such that the set $\{\sum_{j=0}^{\infty} a_{n,j} T^j h; n \ge 0\}$ is weakly sequentially compact in $L^1(m)$, then for any $f \in L^1(m)$ the limit

(4)
$$\lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} T^{j} f(x)$$

exists and is finite almost everywhere.

The following proof is a generalization of that given by Y. Ito in [6]. PROOF. Let $g \in L^1(m)$ and $\{n'\}$ a subsequence of $\{n\}$ such that

Received by the editors March 23, 1972.

AMS 1970 subject classifications. Primary 47A35.

Key words and phrases. Positive linear contraction, individual ergodic theorem, weak sequential compactness.

 $\sum_{i=0}^{\infty} a_{n',i} T^i h$ converges weakly to g. Then for any $u \in L^{\infty}(m)$ we have

$$\int gu \ dm = \lim_{n'} \sum_{j=0}^{\infty} a_{n',j} \int (T^{j}h)u \ dm$$

$$= \lim_{n'} \sum_{j=0}^{\infty} a_{n',j} \int (T^{j+1}h)u \ dm = \int (Tg)u \ dm.$$

This implies that g=Tg. Next suppose that $\int (f-Tf)u \, dm=0$ for any $f \in L^1(m)$. Then, clearly, $\int (f-T^nf)u \, dm=0$ for all $n \ge 0$, and hence

$$\int gu \ dm = \lim_{n'} \sum_{j=0}^{\infty} a_{n',j} \int (T^{j}h)u \ dm$$
$$= \lim_{n'} \sum_{j=0}^{\infty} a_{n',j} \int hu \ dm = \int hu \ dm.$$

It follows that h-g belongs to the closed linear manifold generated by the set $\{f-Tf; f \in L^1(m)\}$. Thus

$$\lim_{n} \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i} h - g \right\|_{1} = 0,$$

and hence $g \ge 0$. Let $A = \{x \in X; g(x) = 0\}$, and let the conservative and dissipative parts [3] of T be C and D, respectively. We shall first prove that A = D. It is clear that $D \subseteq A$. To see that $A \subseteq D$, let T^* denote the corresponding adjoint operator on $L^{\infty}(m)$. Since Tg = g, it follows that $T^*1_A \le 1_A$, whence if we define $B = A \cap C$ then $T^{*j}1_B = 1_B$ almost everywhere on C for each $j \ge 0$. Thus

$$\int h 1_B dm \le \lim_n \int \frac{1}{n} \sum_{j=0}^{n-1} h T^{*j} 1_B dm$$

$$= \lim_n \int \left(\frac{1}{n} \sum_{j=0}^{n-1} T^j h \right) 1_B dm = \int g 1_B dm = 0.$$

Since h is strictly positive, it follows that m(B)=0, and hence $A \subset D$.

Let f be any function in $L^1(m)$. Since A = D, it follows at once that the limit (4) exists and is finite almost everywhere on A. On the other hand, the Chacon-Ornstein theorem [4] implies that

$$\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} T^{i} f(x) = g(x) \lim_{n} \left(\sum_{i=0}^{n-1} T^{i} f(x) \middle/ \sum_{i=0}^{n-1} T^{i} g(x) \right)$$

exists and is finite almost everywhere on X-A. This completes the proof of the theorem.

It should be pointed out here that if $a_{n,j}$ is a regular matrix such that

$$\lim_{k \to \infty} \sum_{i=k}^{\infty} |a_{n,i+1} - a_{n,i}| = 0$$

uniformly in n then it satisfies (1), (2) and (3) (see [5]).

REMARK 1. Let $\{w_n; n \ge 1\}$ be a sequence of nonnegative numbers whose sum is one, and let $\{u_n; n \ge 0\}$ be the sequence defined by $u_n = w_1 u_{n-1} + \cdots + w_n u_0$, $u_0 = 1$. Then the above argument together with Baxter's ergodic theorem [2] implies that under the same condition as in the theorem, for any $f \in L^1(m)$ the limit

(5)
$$\lim_{n} \left(\sum_{i=0}^{n-1} u_i T^i f(x) / \sum_{i=0}^{n-1} u_i \right)$$

exists and is finite almost everywhere. The theorem is a special case of this result.

REMARK 2. If T maps, in addition, $L^p(m)$ into $L^p(m)$ and $||T||_p \le 1$ for some p with p > 1, then for any $f \in L^1(m)$ the limit (5) exists and is finite almost everywhere. This follows from [1] and [7].

BIBLIOGRAPHY

- 1. M. A. Akcoglu and R. V. Chacon, A convexity theorem for positive operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1965), 328-332. MR 32 #192.
- 2. G. Baxter, A general ergodic theorem with weighted averages, J. Math. Mech. 14 (1965), 277-288. MR 30 #4904.
- 3. R. V. Chacon, *Identification of the limit of operator averages*, J. Math. Mech. 11 (1962), 961-968. MR 26 #2883.
- 4. R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160. MR 22 #1822.
 - 5. L. W. Cohen, On the mean ergodic theorem, Ann. of Math. (2) 41 (1940), 505-509.
- 6. Y. Ito, Uniform integrability and the pointwise ergodic theorem, Proc. Amer. Math. Soc. 16 (1965), 222-227. MR 30 #2121.
- 7. R. Sato, On a general ratio ergodic theorem with weighted averages, Proc. Amer. Math. Soc. 35 (1972), 177-178.

Josai University, Sakado, Saitama 350-02, Japan