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JOSEPH   A.   ERBACHER

Abstract. Let M" be a compact differentiable manifold and

R"+k Euclidean space. A necessary and sufficient condition is given

for an immersion yi:M"->-R"+k to be a stationary immersion for

_/=]■■)/" (x—xc, x—xc) dv subject to the side condition V=

¡M". dv= a fixed constant, where xc is the center of mass. In par-

ticular, minimal submanifolds of spheres satisfy this condition.

1. Introduction. Let Mn be an «-dimensional compact differentiable

manifold. An immersion ip:Mn—>-Rn+k induces a Riemannian metric on

Mn; Mn with this Riemannian metric is denoted by M",. Let x denote the

position vector in Rn+k, and let xc denote the center of mass of M™ in

Rn+k; i.e., *C=(1/K) f^» xdv, where V=^in.dv and dv is the volume

element on A/*. For/? e M", the tangent space Tv{Ml) is identified with a

subspace of Tv.(p)(Rn+k). The normal space T^(M",) is the subspace of

7V<î»CKr,+i) consisting of all X 6 Tv.{p)(Rn+k) which are orthogonal to

Tv(Ml). For q e Rn+k, T„(Rn+k) is identified with T0(Rn+k) by parallel

translation, where 0 is the origin in Rn+k; and T0(Rn+k) is identified with

Rn+k. If z:Mn-*-R"+k, we consider r as a vector field defined along %p by

the above identifications. Let zv(/>) be the orthogonal projection of zip)

into T^iMD and zT the orthogonal projection of zip) into £P(M^). The

Euclidean inner product will be denoted by ( , ).

Theorem. The immersion cp : Mn-^-R"+k is a stationary immersion for

J~hi" (x~xc> x~xc) dv subject to the side condition Vss$3I» dv=a fixed

constant, say Va, if and only if ix—xc)A-=li(x—xc,x—xc) + X)r] and

Ji/" dv= V0, where ?. is a constant and rj is the mean curvature normal [2,

p. 34].1
The stationary character of cp means that if ipt, t e ( — s, s), is any one

parameter family of immersions with ip0=(p and K0=JU" dv for all t,

then dJ(0)/d/=0.
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1 The definition of >¡ in [2] differs from our usage by a factor of \\n.
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Lemma.    The immersion <p:Mn-^Rn+k satisfies

x - xc = K(* — xc, x - xe) + X)r¡,

X a constant, if and only if cp immerses Mn as a minimal submanifold of a

sphere Sn+k~\

As an immediate consequence of the Theorem and the Lemma we have:

Corollary. If <p : Mn-^-Rn+k immerses M" as a minimal submanifold

of a sphere Sn+*-1 with V0=$M* dv, then cp is a stationary immersion for J

subject to V= V0.

Brian Smyth has pointed out the following Proposition to me.

Proposition. // cp : Mn^>-Rn+k is a stationary immersion for J subject to

V=constant and in addition (r¡, r¡) is constant on Mn, then cp immerses Mn

as a minimal submanifold of a sphere.

All immersions, vector fields, etc. are assumed to be C°°.

2. Proofs.

Proof of Theorem. Let y>t be a 1-parameter family of immersions of

Mn into Rn+k with rp0 = tp. Let y denote the position vector in Rn+k for

yt and x the position vector for cp. Assume xc=0. Let u=dy(0)¡dt. It is well

known that (see [1, p. 74] for the case of a surface in R3)

T"(0) = -i   <*!,«) du +
dt JmI

(1) f
= —       (r¡, «) dv.

hti

Div uT dv

For dJ(0)¡dt we have

dJ

dt
(0) =       (x, x)({-r¡, u) + Div uT) dv

Using xc=0 (and therefore JJfj {x,b)dv=0 for a constant vector b) and

(x, x) Div «T = Div(x, x)uT — {uT, grad(x, x))

= Div(x, x)uT — 2{uT, x)

= Div(x, x)uT — 2(n, xT),
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we easily find

(2)

— (0) =      (2x — 2xT — (x, x)r¡, u) dv
dt Jm"

= Í ßxN (x, x)r¡, u) dv.

Since Mn is compact, r¡ is not identically zero. Appealing to the well-

known method of Euler-Lagrange multipliers for variational problems with

side conditions, we conclude from (1) and (2) that a necessary and sufficient

condition for cp to be a stationary immersion for / subject to V= constant

is that there exist a constant X (the Euler-Lagrange multiplier) such that

2xN—{x,x)r¡=Xr¡; i.e.,

(3) 2xN = i(x, x) + X)r¡.

Proof of Lemma, (i) Assume xc=0. Suppose x=2i(x, x)-\-X)r¡. Clearly

xN=x. Let X be tangent to M". Then X(x, x)=2{X, x)=0, since xx=x.

Thus (x, x) is constant on M" and x = (constant) r¡. This implies that cp

immerses Mn as a minimal submanifold of a sphere with center at the

origin.

(ii) Suppose cp immerses Mn as a minimal submanifold of a sphere with

center a. Since x—a=/j,r¡ for some constant pt,, it suffices to show that

xc=a. ~Lzlf={x, b), where b is a constant vector. Then Af=(r¡, b), where

A is the Laplacian on Mn (see [2, p. 340]). Hence, j"_W" (r¡, b) dv=0; and

thus f.}/" r¡ dv=0. But x—a=fir¡. Thus j^» (x—a)dv=0; i.e., xc=a.

Proof of Proposition. Assume xc=0, and let H—{r¡, r¡). Let /=

l-(x, x). Then, it is not difficult to show that Af=n + {x, r¡), where A is the

Laplacian on Mn. At a local maximum of/, we must have x=xx and

A/^0. Thus, (jc, r¡)^—n; and using (3) we obtain/^(—InjH)—X at a

local maximum of/. Similarly, at a local minimum of/we have/^

i—2n¡H) — X. Thus,/is constant on Mn and x = (constant) r¡. This implies

that cp immerses Mn as a minimal submanifold of a sphere.

Remark 1. It would be interesting to know whether or not all solutions

of the variational problem considered in this paper are minimal sub-

manifolds of spheres.

Remark 2.

{x1 — Xo, Xj — Xo) dvx dvo = 2V \    (x — xc, x — x ) dv,
JJ JMi

where x( is the position vector and dv¿ the volume element for the ;'th

factor of Mix Ml.
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