CHARACTERIZING TOPOLOGIES BY FUNCTIONS

MELVIN C. THORNTON

ABSTRACT. The multiplicative structure of the idempotents in the semiring of nonnegative lower semicontinuous functions on a large class of spaces determines the topology of the space.

Nielsen and Sloyer [2] proved that compact T_1 spaces are homeomorphic iff their semirings of nonnegative lower semicontinuous functions are isomorphic. This note shows that the compact T_1 assumption is much too strong and that only an isomorphism between the idempotent elements is necessary. Let $L^+(X)$ denote the semiring of all nonnegative real-valued lower semicontinuous functions on X with multiplication and addition defined pointwise. A space is a T_D space iff the derived set of every point is closed [3].

THEOREM. Let X and Y be T_D spaces. Then X is homeomorphic to Y iff the idempotents in $L^+(X)$ are isomorphic to the idempotents in $L^+(Y)$.

PROOF. Let $U(X) \subset L^+(X)$ denote the set of idempotents. The elements of U(X) are precisely the characteristic functions of the open sets in X. U(X) is a Brouwerian lattice where $f \subseteq g$ iff $f(x) \subseteq g(x)$ for all x, $f \lor g(x) = \max\{f(x), g(x)\}$, and $f \land g(x) = \min\{f(x), g(x)\}$. These lattice operations are determined by the algebra of the semiring as follows. The ordering $f \subseteq g$ holds iff $f \cdot g = f$. The meet is $f \land g = f \cdot g$. The join of f and g is that unique element $(f \lor g) \in U(X)$ such that $(f \lor g) \cdot f = f$, $(f \lor g) \cdot g = g$, and with the property that if $h \cdot f = f$, $h \cdot g = g$, then, $(f \lor g) \cdot h = (f \lor g)$. The dual of U(X), C(X), is the lattice of closed sets of X under inclusion and is thus determined by the algebraic structure of the idempotents of $L^+(X)$. If $L^+(X)$ has its idempotents isomorphic to those of $L^+(Y)$ then C(X) is lattice isomorphic to C(Y). Since both spaces are T_D spaces, by [3, Theorem 2.1], X is homeomorphic to Y. The topology of X can be explicitly recovered from C(X) as in [1].

Received by the editors March 17, 1972.

AMS 1969 subject classifications. Primary 5420; Secondary 5460.

Key words and phrases. Lattice of closed sets, semicontinuous functions.

REFERENCES

- 1. D. Drake and W. J. Thron, On the representations of an abstract lattice as the family of closed sets of a topological space, Trans. Amer. Math. Soc. 120 (1965), 57-71. MR 32 #6390.
- 2. R. Neilsen and C. Sloyer, *Ideals of semi-continuous functions and compactifications of T_1 spaces*, Math. Ann. 187 (1970), 329–331. MR 42 #8450.
- 3. W. J. Thron, Lattice-equivalence of topological spaces, Duke Math. J. 29 (1962), 671-679. MR 26 #4307.

Department of Mathematics, University of Nebraska, Lincoln, Nebraska 68508