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A  CLASSIFICATION  OF THE STRUCTURALLY STABLE
CONTRACTING ENDOMORPHISMS  OF S1

LOUIS  BLOCK AND JOHN FRANKE

Abstract. An open dense set of contracting endomorphisms

of S1, the circle, are found to be structurally stable. This set is

classified up to topological conjugacy by a countable number of

invariants.

1. In this paper we prove necessary and sufficient conditions for con-

tracting C2 endomorphisms of S1, i.e. C2 maps with \dfx\<l, to be struc-

turally stable in the C2-topology. Shub in [4] proved structural stability

for expanding endomorphisms. In [5], Smale asks for a characterization

of the structurally stable endomorphisms of S1. Nitecki has proven a

structural stability theorem for nonsingular endomorphisms of S1 in [2].

It should be noted that this paper contains a basic error in the proof of

the density of Axiom A. We have just received a preprint from Nitecki [3]

in which he constructs Markov partitions for a general class of endomor-

phisms of degree greater than one, and proves a structural stability

theorem. M. V. Jakobson in [6], which has been translated since the writing

of this paper, constructs an open dense set of endomorphisms in

C1(S1, S1) which are D-stable, and shows that a certain subset of these

are structurally stable in C2(51, S1).

We will let K be the set of contracting C2 endomorphisms of S1 with

the C2 topology. If fe K, then x0(/) will denote its unique fixed point.

Let Kx be the subset of A" consisting of those functions/with the property

that dfx=0 implies d2fx^0. lffGKx, then/has only a finite number of

points with dfx=0. This is because any limit would have dfx=0 and

d%=0. The points in the set T(f) = {x g S1 with dfx=0} will be called

turning points.

The orbit of x will be denoted orb(x) and defined to be {/n(x):«^0}.

Let K2 be those functions in K such that x0(/) £ orb(x) for any x g T(f).

The set of/in /Twith the property that x,ye T(f) and orb(x)norb(y)?£ 0

imply x=y will be denoted by K3. Let K0=KxC^K2r\K3. In §2, we prove

that K0 is open and dense in K. The functions in K0 are classified up to
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topological conjugacy in §3. Finally in §4, we prove that K0 is precisely

those elements in K which are structurally stable in the C2 topology.

We will use the notation [a, x, b] to denote the arc from a to b con-

taining x, and [a, (x)*, b] to denote the arc from a to b not containing x.

We would like to thank J. Franks and R. F. Williams for their

encouragement.

2. Lemma 1.    Kx is open and dense in K.

Proof. Density follows from a standard transversality theorem

(see [1]). Openness is also well known but we give a simple proof so that

we can refer to it later. So let/e Kx.

About each point x e F(/), pick an open interval (ax, bx) such that

d2fy^ for all y in the closed interval [ax, bx]. Let T=S1— (J iax,bx),

where the union is taken over x £ F(/). Then if a = min{\dfv\:y e T),

«5*0.

Hence by perturbations less than a we cannot create points where

dfv = 0, outside of U iax, bx).

Let ß==min{\df,\ :z=ax or z=bx for some x e T(f)}. Since d2f is either

positive or negative on each interval [ax,bx], df is either increasing or

decreasing. Thus ß>0.

Let y=inf{|ci2/| :z e U [ax, bx]}. Then y>0.

Now a perturbation of less than min{y, ß} must have exactly one point

y e (ax, bx) with dfy=0. Thus a perturbation of less than min{oc, y, ß) will

still be in Kx.   Q.E.D.

Lemma 2.   K2 is open and dense in Kt.

Proof (Openness). Assume/e Kx and satisfies dfx=0 implies x0(/) <£

orb(x). We must show perturbations of/ have this property. Let J be a

closed interval containing x0(/) such that if xeJ, df^O and such

that / maps J injectively into its interior, /. Then 3 N such that

fNix) el, V x 6 F(/) (since F(/) is finite and/is a contraction). If g is

close enough to/ x0ig) is close to x0(/), gA(x)e/ with gA(x)#x0(g),

V x e Tig), and no x e Tig) is in I. Here we are using the fact that

card F(/)=card Tig) and the elements of F(/) are near the elements of

Tig) which follows from the proof of Lemma 1. But since / is mapped

1-1 into itself by g, with x0(g) fixed, gm(x)j¿x0(g) for any m if x e Tig).

(Density). Let feKv If rff(x0(/))=0, then by an arbitrarily small

rotation we can perturb/so dfixoif))j¿0. Order the turning points of

/, xu • ■ • , xn, such that J(x¿, x0(f))^d(xi+1, x0(f)) where d is the usual

metric on S1. Suppose x0(f) e orb(x1). Let /, be any small interval about

xx, and w=min{«^l:/n(x1)=^o(/)}- We can perturb /in Ix so that

fm(xx)^xüif), but/m(x1) is in a neighborhood of x0(/) in which/is 1-1.
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Hence x0(/) £ orb^). Then let I2 be a small interval about x2 which

does not contain any iterates of xx. (This is possible since/is a contraction.)

We can perturb/on I2 so that x0(/) ^ orb(x2) without affecting iterates of

xx, so that we still have x0(/) $ orb^). Repeating the process « times,

we perturb/to a map in K.,.    Q.E.D.

Lemma 3.    K3 is open and dense in Kx C\K2.

Proof. First we make a few definitions which will be used in this

proof and also later in the paper. Let/g Kxr\K2. Let I be a symmetric

closed interval [a, x0(/), b], about x0(/), in which there are no turning

points. For each nonnegative integer y let

/,(/) = (/'[«, -v0(/), b]) - (f+1[a, x0(/), b]).

Note that /,•(/) is essentially just a fundamental domain for/.

Then 3 y such that, V x, e T(f), 3 «(/)>0 with/"(''(x¿) G/,-(/), since/

is a contraction and/eZi2. Lety'(/) be the smallest suchy". Let M(f) be

the smallest number M such that, V x, e T(f), 3 n(/)5=M with/"(,)(x,) e

(Openness). Let/G K3r\KxC]K2. Let g be a perturbation of/in ZCjPiA^.

We must show g g K3. By the proof of Lemma 1, we can make the

perturbation small enough so that the elements of T(g) lie arbitrarily close

to the elements of T(f). Hence we can make the first M(f) iterates ofi-

cióse to the first M(f) iterates of/, preventing any intersections in the

first M(f) iterates of T(g) under g, and ensuring that j(f)=j(g) and

M(f)=M(g). But Ij(g) is mapped 1-1 onto Ij{g)+X, so by the definition of

jig) there are no intersections of orbits of points in Tig).

(Density). Let /g KxriK2. Let T(f) = {xx, • • •, x„} be ordered as in

Lemma 2. Lety'(/) and M(f) be as above. First perturb/in a neighborhood

of xn so that {f'"(x„):m£M(f)} does not contain any of the first M(f)

iterates of {x\, • • ■ , xn_x). After the first perturbation 3 a neighborhood

of x„_x which does not contain any iterates of other turning points. So

we can perturb/in this neighborhood so that {f'"(xn_x):m^M(f)} does

not contain any of the first M(f) iterates of {x1? • • ■ , x„_2, xn}. Repeating

the process we perturb / to a function with no intersections in the first

M(f) iterates of its turning points. By choice of M(f), this completes the

proof.   Q.E.D.

Combining Lemmas 1, 2, and 3 we have

Theorem 1.    K0 is open and dense in K.

3. Lemma 4. If h is a conjugacy between f and g e K0 and x g T(f),

then h(x) G T(g).
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Proof. Let x e T(f) and suppose h(x) ^ Tig). Then 3 an interval /

containing «(x) on which g is 1-1, by the inverse function theorem. Pick

a, b e «-!(/) with/(a)=/(6). Then h(f(a))=h(fib)) but gih(a))*g(h(b)),
a contradiction.   Q.E.D.

By exactly the same proof, we have

Corollary 1. If h is a conjugacy between f and g e K, and x e T(f)

has the property that no open interval containing x is mapped 1-1 by f, then

h(x) is a turning point of g with the same property.

Definition. Let feK0. Label the elements of T(f), xx, • • • , xn,

starting counterclockwise from the fixed point. We will use this canonical

ordering for the remainder of this paper. (When we are dealing with /

and g e K0, we will let T(f)={x1, • • • , x„} and T(g) = {y1, ■ ■ ■ , yn) with

this ordering. We will also let x0if)=x0, xa(g)=y0.) Let orb(F(/)) =

{/*(*,):jc, e T(f), fe^O}. We order orb(F(/)) by defining:

Zi(f)=xi>
Z¿(/)=the closest element of orb(F(/)) to xx in (xlt (x„)*, x0], and

assuming Z'n_x(f) is defined, we let

Z'„if) be the closest element of orb(F(/)) to Z'n_xif) in iZ'n_A\f),

\xn)   ' xa\-

We also let:

ZLx(f)=the closest element of orb(F(/)) to xx in (xlt iZ'2if))*, x0],

and assuming Zln+1(/) is defined, let

Zl„(/)=the closest element of orb(F(/)) to Z'_n+1(f) in (Z'_n+1(f),

iZ2if))*,x0].

In other words, we number orb(F(/)) positively in one direction from

xu and negatively in the other. This makes sense, since x0 is the only

accumulation point of / and 3 an infinite sequence of elements of

orb(F(/)) on each side of x0 approaching x0.

Let Z¿(/)=(/•(/"), fe(0) where Z¡(f)-f™(xMi)).
Define Z¡(/) and Z¿(/) by the same formal definition as above, except

number the turning points clockwise from the fixed point.

Theorem 2. Let / geK0. f and g are topologically conjugate iff

ZAf^Ztig), V ,-, or Ziif)=Ziig), V /.

Proof. First suppose Ziif)=Ziig), V /. Then / and g are both

orientation preserving or reversing at their fixed points. If/is orientation

preserving, let I(f)=[x1, x0, xj, I(g)=[y1,y0,yn]- If / is orientation

reversing and f(xn)=Zi(f) with />0, let I(f)=[xn, x0,/(xj] and 1(g) =

ÜWcSOÜl- If /<0, let /(/)=[x1,x0,/(x1)] and I(g)=[y1,y0,g(y1)].
Let a be the endpoint of /(/) in the counterclockwise direction from x0

and let b be the other endpoint. Then/(/)=/(£), where j(f) is as defined
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in Lemma 3. Here of course we use the intervals we have just defined for

the I in Lemma 3.

Take any homeomorphism h:IHf)(f)^-Ij(g)(g) sending any Z¡(f) in

Ij(f)(f) to Z'i(g), which is possible since Zi(f)=Zi(g). Define « on each

Ik(f) by A(jr)=£*-«»>A/w>-*(jr). Here we only look at 1(f) and 1(g), so

negative iteration makes sense. Setting «(x0)=>'0 we get a conjugacy

from /(/) to 1(g). Let ax be the first point not in 1(f) in the counterclock-

wise direction from 1(f) that gets mapped to a or b. Let bx be the first point

not in /(/) in the clockwise direction from 1(f) that gets mapped to a or b.

Case 1. If 3 no such point ax, then f(S1)<^ 1(f). We extend h to S1 by

mapping [xk, (x0)*, xk+l]^[yk, (y0)*,yM] by h(x)=g~lhf(x), where the

inverse is taken in [yk, (y0)*,yk+1] as g is 1-1 on [yk, 0'0)*,;;i+i]- Note that

h(xk)=yk since h(Z¡(f))=Z¡(g), V i. In the orientation reversing case, one

of the intervals [a, (x0)*, xx) or [b, (x0)*, xn) is nonempty and we define

h on this interval by the same formula.

Case 2. If 3 ax as above, then also 3 äx and we extend « to [bx, x0, ax]

by defining « separately on the intervals [xx, (x0)*, x2], [x2, (x0)*, x3], • • • ,

[x„, (x0)*, a1], where x2, • • ■ , xv g [xx, (x0)*, ax\, and on the intervals

[x„, (x0)*, xn_x\, [xn_x, (x0)*, xn_2], • • • , [xn_Q, (x0)*, ¿J wherexn_j, • ■ •,

xn-a G [xn, (xq)*,^] as in Case 1. In the orientation reversing case, if

there is an interval of the form [a, (x0)*, xx) or [b, (x0)*, xj in [bx, x0, Oj],

we define « there, also. In any case h sends Z¿(/) to Z¡(g).

Next we define a2, b2 analogously to ax, bx using [bx, x0, flx] instead of

/(/) and extend « to [b2, x0, a,]. Since/is a contraction, eventually there

will exist no an and we can extend h to all of S1 as in Case 1. h is clearly a

conjugacy.

If Zi(f)=Zi(g) then again/and g are both orientation preserving or

reversing at their fixed points. We can define /(/) and 7(g) as above, with

jif)=jig). We define a homeomorphism h on Ji(/) mapping Z¿(/) to

Z,'(g) and then extend /; as above. This proves necessity.

Now, conversely, let A be a conjugacy between/and g. By Lemma 4,

hiTif))=Tig). Also h(x0)=y0. Hence, either hixn)=yn or «(xj^.

Case 1. «(x„) = v Then hixi)=yi, V /. Note that h(Z'i(f))=Z'i(g), V /,
since iterates of turning points are preserved by h and h~l. But

h(z¡(f)) = *(/><»(*„„)) = r(,)(*(W) = r<o0iMi))-

Hence gr",(^(¡,)=z;^), so Z,(g) = (r(/), ^(/))=Z,(/).

Caje 2. h(xn)=yx- Then renumber the turning points (counting

clockwise) so that h(xn)=yn. Then /?(x,)=j¿, V /, and it follows exactly

as in Case 1 that Zi(f)=2i(g), V /.   Q.E.D.

4. Theorem 3.   fe K0 implies fis structurally stable.
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Proof. Let g be a perturbation off. Since K0 is open we can assume

g e K0. We can also assume card F(/)=card Tig) by the proof of Lemma

1. Pick Mif) and j(f) as in Lemma 3. We can make the perturbation

small enough so that the first M(f) iterates of T(g) lie arbitrarily close to

the first Mif) iterates of F(/). Thus we can ensure that whenever Z¿(/) e

4(/) we have Z¡ig) elkig) and Zi(/)=Z¿(g), V k^jif). But this implies

jif)=jig) and Ziif)=Ziig), V i. Hence by Theorem 2, / and g are
topologically conjugate.   Q.E.D.

Theorem 4.   Iffe K is structurally stable, thenfe K0.

Proof. If ¿^=0 and d2fx—0 then by an arbitrarily small perturbation

we could increase the number of turning points which have the property

that/is not 1-1 on any interval containing that point. But/must have a

finite number of such turning points by Corollary 4, since/is conjugate

to some /' e K0 by hypothesis and Theorem 1. This contradicts the

structural stability off. Hence fe Kv

Suppose dfx=0, x0if) e orb(x). By the first paragraph, ci2/.5¿0./must

be conjugate to some/' e K0. But a conjugacy must send x0(/) to a point

which is both fixed and on the orbit of a turning point. This contradicts

/' 6 K0; hence fe K2.

Now suppose orb(x)Oorb(i') is nonempty, where x^y are in F(/).

Again/is conjugate to some/' e K0. But the conjugacy must send points

in orb(x)norb(j) to points in the orbit of two turning points. This

contradicts/' e K0. Hence fe K3.

Thus/eAf1nA:2n^3=^0.   Q.E.D.
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