A NEW CHARACTERIZATION OF SEPARABLE GCR-ALGEBRAS

TROND DIGERNES

ABSTRACT. It is shown that a separable C^* -algebra $\mathfrak A$ is GCR if and only if the set of central projections in its enveloping von Neumann algebra $\mathfrak B$ is generated, as a complete Boolean algebra, by the set of open, central projections in $\mathfrak B$.

- 1. Let $\mathfrak A$ be a C^* -algebra, and $\mathfrak B$ its enveloping von Neumann algebra, that is, $\mathfrak B=\pi_u(\mathfrak A)''$, where π_u is the direct sum of all cyclic representations of $\mathfrak A$. The representation π_u is faithful, and we may therefore consider $\mathfrak A$ as a sub- C^* -algebra of $\mathfrak B$. To each (nondegenerate) representation π of $\mathfrak A$ there corresponds a projection $E'\in \mathfrak B'=\pi_u(\mathfrak A)'$ such that π may be identified with the map $A\in \mathfrak A\to AE'\in \mathfrak BE'$ [2, §§5 and 12]. A projection $E\in \mathfrak B$ is said to be open if it supports a left ideal in $\mathfrak A$; that is, if there is a left ideal J in $\mathfrak A$ such that $J=\mathfrak BE$, where "-" denotes strong closure [1]. We let $\mathscr P$ denote the set of all central projections in $\mathfrak B$, $\mathscr P_0$ the set of open projections in $\mathscr P$ and $\langle \mathscr P_0 \rangle$ the Boolean algebra generated by $\mathscr P_0$ in $\mathscr P$. With these notations the following has been proved by H. Halpern and the author [5]:
 - 1. \mathfrak{A} is CCR if and only if \mathscr{P}_0 is strongly dense in \mathscr{P} .
 - 2. If $\mathfrak A$ is GCR, then $\langle \mathscr P_0 \rangle$ is strongly dense in $\mathscr P$.

The purpose of this paper is to obtain a converse to 2, at least in the separable case.

For the general theory of C^* -algebras and von Neumann algebras we refer the reader to the two books of Dixmier ([2], [3]), especially §§4, 5 and 12 of [2].

2. With notations as above we have:

Theorem. For a separable C^* -algebra $\mathfrak A$ the following two conditions are equivalent:

- (i) **A** is GCR;
- (ii) $\langle \mathscr{P}_0 \rangle$ is strongly dense in \mathscr{P} .

PROOF. (i) \Rightarrow (ii). See [5].

Received by the editors April 13, 1972.

AMS 1970 subject classifications. Primary 46L05; Secondary 46L25.

Key words and phrases. C*-algebra, enveloping von Neumann algebra, open projections, GCR-algebra.

(ii) \Rightarrow (i). To prove this we use the following characterization of separable GCR algebras, due to Glimm: $\mathfrak U$ is GCR if and only if any two irreducible representations of $\mathfrak U$ with the same kernel are equivalent [4].

So let π_1 , π_2 be irreducible representations of $\mathfrak A$ with $\ker \pi_1 = \ker \pi_2$, and let Q_1 , Q_2 be the central supports of the minimal projections in $\mathfrak B' = \pi_n(\mathfrak A)'$ corresponding to π_1 and π_2 respectively. (The central support C_E of a projection E in a von Neumann algebra $\mathfrak B$ is defined by $C_E = \inf\{P \in \mathscr P; PE = E\}$.) Then Q_1 and Q_2 are minimal in $\mathscr P$. It suffices to show that $Q_1 = Q_2$. We argue by contradiction: Suppose $Q_1 \neq Q_2$; then $Q_1Q_2 = 0$, by minimality. Let $\mathscr P_c$ denote the set of closed, central projections, i.e. $\mathscr P_c = \{I - P; P \in \mathscr P_0\}$ and set $\mathscr P^* = \mathscr P_0 \cup \mathscr P_c$.

Claim. There is a $P \in \mathscr{P}^*$ such that $Q_1 \leq P$ and $Q_2 \leq I - P$.

Assume, for a moment, this has been proved, and, for definiteness, let P be open. Then there is an ideal J in $\mathfrak A$ such that $J=\mathfrak B P$, and consequently there is an $A\in J$ with $AQ_1\neq 0$, since $0\neq Q_1\leq P$. On the other hand, $AQ_2=AP\cdot Q_2(I-P)=AQ_2P(I-P)=0$, contradicting our assumption that $\ker \pi_1=\ker \pi_2$, and we are through.

So it remains only to prove the Claim. Again we argue by contradiction: Assume there are distinct, minimal projections Q_1 and Q_2 in \mathcal{P} such that,

(*) for all $P \in \mathcal{P}^*$, $(I - P)Q_1 \neq 0$ or $PQ_2 \neq 0$. Let $Q = Q_1 + Q_2$ and consider the set:

$$\mathscr{P}(Q) = \{ P \in \mathscr{P}; PQ = Q \text{ or } PQ = 0 \}.$$

By (*) and by minimality of Q_1 and Q_2 , $\mathscr{P}^*\subseteq\mathscr{P}(Q)$; and by minimality of Q_1 and Q_2 again, $\mathscr{P}(Q)$ is closed under finite unions, finite intersections and complementation. It follows that $\langle \mathscr{P}_0 \rangle = \langle \mathscr{P}^* \rangle \subseteq \mathscr{P}(Q)$. Now, by assumption there is a net $\{P_\alpha\}$ from $\langle \mathscr{P}_0 \rangle$ such that $P_\alpha \to Q_1$ strongly, and, by minimality of Q_1 , we may assume $P_\alpha \geqq Q_1$ for all α . But then, since $\langle \mathscr{P}_0 \rangle \subseteq \mathscr{P}(Q)$, also $P_\alpha \geqq Q_1 + Q_2$ for all α , and consequently $Q_1 = \lim P_\alpha \geqq Q_1 + Q_2$, contradiction.

This completes the proof of the theorem.

3. REMARK. In the course of the proof we have also established the following: If $\mathfrak A$ is a C^* -algebra (separable or not) with the property that $\langle \mathscr P_0 \rangle$ is dense in $\mathscr P$, then any two factor-representations of $\mathfrak A$ with the same kernel are quasi-equivalent.

REFERENCES

1. C. A. Akemann, The general Stone-Weierstrass problem, J. Functional Analysis 4 (1969), 277-294. MR 40 #4772.

- 2. J. Dixmier, Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404.
- 3. —, Les algèbres d'opérateurs dans l'espace Hilbertien, 2ième éd., Gauthier-Villars, Paris, 1969.
- **4.** J. Glimm, *Type I C*-algebras*, Ann. of Math. (2) **73** (1961), 572–612. MR **23** #A2066.
 - 5. H. Halpern and T. Digernes, On open projections for C*-algebras (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024