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MATRIX  SUMMABILITY  IN  AMENABLE  SEMIGROUPS

PETER  F.   MAH1

Abstract. Necessary and sufficient conditions are given for an

infinite matrix to be almost Schur and almost strongly regular in

left amenable semigroups.

1. Introduction. In [7] the author discusses various methods of matrix

summability in amenable semigroups. In that paper, sufficient conditions

were given for an infinite matrix to be almost Schur and almost strongly

regular. Examples were given to show that the conditions are not necessary.

Recently, P. Schaefer gave necessary and sufficient conditions for an

infinite matrix to be almost strongly regular for the additive semigroup of

positive integers [8]. This was also obtained by Howard T. Bell via a

different approach [1]. In this paper, we give necessary and sufficient

conditions for an infinite matrix to be almost Schur and almost strongly

regular in certain amenable semigroups.

2. Preliminaries. We shall freely use notations and definitions in [7].

Recall that a semigroup S is left amenable (LA) if the Banach space of all

bounded real-valued functions on 5 with the sup norm, m(S), has a

normalized positive left translation invariant linear functional. Such a

linear functional is called a left invariant mean (LIM). The semigroup is

said to be extremely left amenable (ELA) if the LIM is also multiplicative.

It is shown by Day [2, p. 524, Theorem 1] that if S is LA, there is a net

{<f>x} of finite means converging to left invariance in norm. If, in addition,

S is countable then this net can be replaced by a sequence [6, p. 42,

Lemma 5.1]. Examples of LA semigroups are commutative semigroups,

solvable groups and locally finite groups. Extremely left amenable semi-

groups are precisely those in which every two elements have a common

right zero. For more details, we refer the reader to [2], [3], [4], [5].
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If 5 is LA then a function fe m(S) is said to be left almost convergent

to k if <f>(f)=k for every LIM </>. We shall denote the set of all left almost

convergent functions by F, and write / lac to k to mean / left almost

converges to k.

By an infinite matrix A = (A(s,t)) on 5, we shall mean a real-valued

function on 5x5. If A is an infinite matrix on 5 and/ew(5), Af is the

function defined on 5 by Af(s)=T^, A(s, t)f(t), whenever the sum on the

right-hand side exists for each s in 5. (See [7] for the definition of the sum.)

If <p is a finite mean, i.e., if <f> is a convex combination of point measures

in w(5)*, define l$:m(S)^>-m(S) by

¿=i

where «HS'íi <p('¡)hr Thus> if LO(f)-{lsf:s 6 S) denotes the left orbit
of/and CoLO(/) denotes the convex hull of the left orbit off, then

I^fe CoLO(f). For the infinite matrix A = (A(s,t)), we shall write, for

each fixed /, (l^A,)(s) for yj£x <p(t¡)A(t¡s, t) when we consider A(s, t) as a

function of s.

We assume throughout that the semigroup 5 contains no finite left

ideals.

3. Almost Schur matrices. An infinite matrix A is said to be almost

Schur if Afe F whenever/e m(S).

3.1. Theorem. Let S be a countable LA semigroup. Then the following

conditions are both necessary and sufficient for an infinite matrix A to be

almost Schur:

(3.1.1) Sup, 7, \A(s, t)\<oo.
(3.1.2) For each t, A(s, t), as a function of s, lac to <xt.

(3.1.3) For some sequence </>,„ of finite means converging to ¡eft invariance

in norm,

lim 2 \U<pmAt)(s) — or.,] = 0    uniformly in s.
m        t

Moreover, Af lac to T, a,/(i).

Proof. Assume that A is almost Schur and that, for each fem(S),

Af lac to y, ottf(t). Then (3.1.1) follows from Theorem 3.1 and Lemma

4.1 in [7]. That (3.1.2) holds follows from Alt(s) = Al{t}(s) = A(s, t),
where l/; is the characteristic function of B. To see (3.1.3), note that for

each/ew(5), we have, by Theorem 7 in [5],

lim (/♦^/)(s)-2«t/(o
t

= 0
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uniformly in s. This is equivalent to

rim

um 2 *áu) 2 Mffi, o/(o - 2 «*/(o
m i=\ t t

Htm \

= lim 2   2 tMMUs, 0 - a«  /(0

= lim 2 [(l*„A)(s) - a.]/(0 = 0   uniformly in 5.
m

But, for each s and each m, (l¿ At)(s)—xte lx(S) and the above set of

equations says the sequence (l4>mAt)(s) — at converges weakly to 0 uniformly

in s in lx(S). Since weak convergence implies strong convergence for

sequences in lx(S), (3.1.3) follows.

Suppose now that (3.1.1), (3.1.2) and (3.1.3) hold. Using (3.1.1) and

(3.1.2) we can show that the sum 2t latl exists, and thus for every fem(S),

2, cntf(t) exists. Note that, for each s and each m, (¡<t,mAt)(s)—a.t e lx(S),

and (3.1.3) implies (/^ At)(s)—at converges weakly, i.e., for each/G m(S),

lim 2 [('*^.)(s) - «.1/(0
m      i

nm

= hm 2 tó) 2 A(<is> o/w - 2 a</(0
m   ¿=1 t <

= 0   uniformly in s.

By Theorem 7 in [5], we see y4/lac to 2< at/(0-

3.2. Corollary. A countably infinite LA semigroup S without any

finite left ideals cannot have a unique LIM.

Proof. If 5 has a unique LIM then F=m(S). Thus the identity map A,

given by A(s, t)=l if s=t and 0 otherwise, is almost Schur. By Theorem

3.1 in [7], A(s, t), as a function of 5, lac to 0 for each t. Hence, for the

constant one function 1 on S, AI lac to 0 by 3.1. But .41 = 1 and thus must

lac to 1, which cannot be. Thus S cannot have a unique LIM.

3.3. Corollary. A left cancellative LA semigroup without any finite

left ideals cannot have a unique LIM.

Proof. This follows immediately from Theorems Ex and E2 in [6]

and 3.2.
3.4. Remark. The results in 3.2 and 3.3 are already contained in

Granirer's works, who actually proved much more than 3.2 and 3.3. We

refer the reader to Theorem A, p. 32, and Theorem E, p. 49, in [6].

= lim (l*mAf)(s) - 2 o./(0
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3.5. Example.    Let 5 be the additive positive integers. Define A by

A(m, n) = 1 if m = n,

= 0 if n < m,

= -(1/2)"-'"    if«> m.

Theorem 3.1 shows A is almost Schur. Condition (3.1.3) is the only

difficult part to check. To see this, let Sk={i e S:i^k} and <f>k=

¿.tes,. (I/Ar)l ¿. Then <f>k is a sequence of finite means converging to left

invariance in norm. Condition (3.1.3) is equivalent to

lim 2   2 7 A(m + '» ")
*       n      1=1 *

= 0   uniformly in m.

But

1lim 2   2 _ ̂ (m + i> ")

= Hm 2   2 ~ ̂ (w + '' ") +nm 2  2 ~ ̂ (m + '">")
¿   n=m+l    f—1 * *   n>m+fc    i—1 *

^ lim(2//c) + lim(2//c) = 0   uniformly in m.

4. Almost strongly regular matrices. An infinite matrix A is almost

strongly regular if Af lac to /: whenever /lac to k.

4.1. Theorem. Le/ S be a countable LA left cancellative semigroup

generated by ß<=5. FAe following conditions are both necessary and

sufficient for an infinite matrix A to be almost strongly regular:

(4.1.1) Sups7t\A(s,t)\<cc.

(4.1.2) 2f A(s, t), as a function of s, lac to 1.

(4.1.3) For some sequence <pm of finite means converging to left invariance

in norm, limm 2< W4, A()(s) — (1$ Aat)(s)\=0 uniformly in s for every a e B.

Proof. Suppose (4.1.1), (4.1.2) and (4.1.3). Then condition (4.1.1)

says A:m(S)-^-m(S) is a bounded linear operator. By (4.1.2) and the fact

that F=C@C\(K), it suffices to show A(C\(K))^ C\(K), if C and C\(K) are

as defined on p. 396 in [7]. For each s e S,ae B and each m, (1$ At)(s)—

(l+mAat)(s)elx(S); and (4.1.3) says (l^mAt)(s)-(l^AJ(s) converges to 0

in /j-norm uniformly in 5. Hence (l<t,mAt)(s) — (l4,mAal)(s) converges weakly

to 0 uniformly in s. This implies, for each/e m(S),

Hm 2 [(M«Xs) - (l*mAat)(s)]f(at)
m      t

= \\m%mA(\af - loS/)](s) = 0   uniformly in s.
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Thus A(laf— \„sf) e C1(7Q. Also, from the following inequality which

follows from (5.0.1) in [7],

Km

2'WMW-/)(',■*)
71m

■It««,) 2 A(tiS,t)f(t)
i=l teS-aS

= ii/ii 2 km<)(s)i = ii/ii 2 k'*axs) - (/^„f)(s)i,

we see that A(lnSf-f) e C\(K). Thus A(IJ-f) g C1(K). Since

{laf-f:fem{S),aeB}

spans A", and .4 is continuous, this implies /4(CI(70)cCl(7£).

Suppose now that A is almost strongly regular. Then (4.1.1) and (4.1.2)

are clear. Hence A is a continuous linear map from m(S) into m(S) such

that.4(C!(70)cCl(7Q.
Now for each/G w(S), a g 5,

¿a./- i*b/xs) = 2 (^> o - ¿(*> «o)/(«o-

Since (/„/-W) = (/a/-/)+(/-W'), by Proposition 4.4 in [7],

4/- l„s/G c'(^)- Hence It (A(s, t)-A(s, at))f(at) lac to 0. By Theorem
7 in [5] it follows that for any sequence <f>m of finite means converging to

left invariance in norm,

Mm l+mA{laf- 1„,ç/)(s)
'" -ST

= lim ¿ V*SAi - Aa>)](s)f(at) = 0    uniformly in s.
m       ,

Since 5 is left cancellative this implies

lim 2 ['¿.„M« - A„,)](s)g(t) = 0    uniformly in s

for all g e m(S). But for each m and each s, [1$ (At — Aat)](s) is in lx(S);

and since weak convergence is equivalent to strong convergence in I^S) for

sequences, it follows that

lim 2 \(¡4,mAt)(s) - {l4,mAat){s)\ = 0    uniformly in s.
m      t

4.2. Remark. If we take <pm in (4.1.3) as defined in Example 3.5, then

(4.1.3) is just condition (*) on p. 323 in [8].

4.3. Theorem. Let S be a countable ELA semigroup (but need not be

¡eft cancellative).  Then the following conditions are both necessary and
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sufficient for an infinite matrix to be almost strongly regular:

(4.3.1) Sup, 2Mis,t)\<oo.
(4.3.2) 2/ Ms, t), as a function of s, lac to 1.

(4.3.3) For every a e S such that a e Sa, 2íeS~a,s \A(S> 01 > as a function

of s, lac to 0.

Proof. That the conditions are sufficient was proved in Theorem 7.3

in [7]. To show that they are necessary we shall only check (4.3.3) since

the other two are easy. Let, then, {tm} be a sequence of point measures

converging to left invariance in norm. That such a sequence always exists

follows from Theorem 3 in [3] and Lemma 5.1 in [6]. Now by Proposition

4.4 in [7], \s~asfe C\(K) for every/e m(S). Hence, using Theorem 8 in

[5],

lim A(\s^,sf)(tms) = lim 2 A(tms, t)\s^aS(t)f(t)
m m       f

= lim   2   "4(tms> t)f(t) = 0    uniformly in s.
m teS~aS

Thus, by defining

B(s, t) = A(s, t)   \iteS~aS,

= 0 otherwise,

then, for every/e m(S),

lim Bf(tms) = lim 2 B(tms, t)f(t)
m m      t

= lim   2   ^(ímSj 0/(0 = 0    uniformly in 5.
m leS~nS

But for each 5 6 5, B(s, t) e lx(S) and since weak convergence is equivalent

to strong convergence in lx(S) for sequences, it follows that

lim   2   MCmS, í)l = lim 2 l^(rms, 01 = 0    uniformly in s,
m teS~«S m

which is precisely condition (4.3.3).

4.4. Corollary. If A is almost strongly regular then A cannot be

almost Schur.

Proof. If A is almost strongly regular then A(s, t), as a function of s,

lac to 0 for each t, and 7t A(s, t), as a function of s, lac to 1. Thus, if A

is also almost Schur then 7t A(s, t), as a function of s, lac to 0.

4.5. Example. Let S={(m, n):m,n are positive integers}. Define

the binary operation * on 5 by

(mx, nx) * (m2, «.,) = (mx v m2, nx v n2),
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where mxvm2=max.{mx, m2). Then it can be checked that 5 is an ELA

semigroup with respect to *. Define A = (A(n, k; u, v)) by

A(n,k;u,v) = (\¡2)u    if u = v, u = n v k,

= 0 otherwise.

As shown in Theorem 8 in [5] a function fem(S), for an ELA S, lac

to a iff, for every £>0, there exists a right ideal Sc in S such that

|/(0—a|<£ for every t e Se. In our semigroup here, this means that

for every £>0, there exist positive integers n0 and k0 such that for all

n_«0 and all k^.k0, \f(n,k)—tx\<e. With this in mind we not show A

satisfies the conditions in Theorem 4.2, so that A is almost strongly regular.

That A satisfies conditions (4.3.1) and (4.3.2) is easy to check. To see

(4.3.3) let (w0, v0) be given (this is the a in 4.3.3). Then for all (n, k) such

that «>w0vi|o and k>u0vv0, we have

2 \A{n, k; u, v)\ = 2 MO», *: "> «01 = 2 ° = °-
(n.v)zS—(ua.vo)S u < uqVvo'^v< uoVto

Thus, for every £>0 let «0>Mo ar>d ̂ o>"o- Then for all « = «0 and k^.k0,

\A(n,k;u,v)\ < e,
(u.r)eS~(u0.v0)S

i.e., (4.3.3) holds.

4.6. Remark. The countability of S was not needed to prove the

conditions in the above theorems are sufficient.
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