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A  NOTE  ON EMBEDDING A PARTIALLY  ORDERED

RING IN A DIVISION ALGEBRA

WILLIAM  H.  REYNOLDS

Abstract. If H is a maximal cone of a ring A such that the

subring generated by H is a commutative integral domain that

satisfies a certain centrality condition in A, then there exist a maxi-

mal cone H' in a division ring A' and an order preserving mono-

morphism of A into A', where the subring of A' generated by H'

is a subfield over which A' is algebraic. Hypotheses are strengthened

so that the main theorems of the author's earlier paper hold for

maximal cones.

The terminology of the author's earlier paper [3] will be used. For a

subsemiring H of a ring A, we write H—H for {x— y:x,y e H); this is

the subring of A generated by H. We say that H is a u-hemiring of A if

H is maximal in the class of all subsemirings of A that do not contain a

given element u in the center of A. We call H left central if for every

a e A and he H there exists h' e H with ah=h'a. Recall that H is a cone

if Hn(—H)={0], and a maximal cone if H is not properly contained in

another cone.

First note that in [3, Theorem 1] the commutativity of the hemiring,

established at the beginning of the proof, was only exploited near the end

of the proof and was not used to simplify the earlier details. In the present

paper, this fact is put to good use, for commutativity will not be at our

immediate disposal. We will show that with stronger hypotheses, the

conic hemiring of Theorems 1,2, and 3 in [3] can be replaced by a maximal

cone to obtain Theorems 1, 2, and 3 listed below. This is of interest since,

as observed in [2], maximal cones are somewhat more plentiful than

conic hemirings. Our first theorem is of a more general nature.

Theorem A. Let H be a nontrivial maximal cone of a ring A such that

for every nonzero a, b e H—H, ab is also nonzero. Then the following hold:

(1) If H is left central in A, then there exist a conic l-hemiring H' in a

ring A' with 1 and an order preserving monomorphism A^-A', where every

nonzero element of H' has an inverse in H' and every nonzero element of A

has a left inverse.
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(2) If in addition to the hypothesis of (I), H is commutative, then H' is

left central in A' and A' is a division ring.

(3) If in addition to the hypotheses of (I) and (2), H—H=H\J(-H),

then F=H'\J(—H') is a subfield of A' over which A' is an algebraic F-

algebra.

(4) If A is commutative and H—H=H\J( — H), then there exist a conic

l-hemiring H' in afield A' and an order preserving monomorphism A-^-Ä,

where F=H'\J(—H') is a subfield of A' over which A' is algebraic.

Recall that a positive cone H of a ring A is archimedean if for every

a, be H with a?¿0 there exists ne N such that na—b e H.

Theorem 1. Let H be a nontrivial archimedean left central maximal

cone of a ring A and assume that the ring H—H has no proper divisors of

zero. Then there exist a left central conic \-hemiring H' in a division ring

A' and order preserving monomorphisms of A into A' and H' — H' into the

ring R of real numbers, where F=H' — H' is a subfield of A' over which A'

is algebraic. Moreover, if A is commutative, so is A'.

Theorem 2. Let H be a nontrivial archimedean maximal cone of a

commutative ring A and assume that the ring H—H has no proper divisors

of zero. Then there exists an order preserving monomorphism from A into the

ring C of complex numbers (with R+ as positive cone) which is unique on

H-H.

Theorem 3. Let A be a ring containing R+ as a subsemiring. Then

R+ is a left central maximal cone of A iff A is isomorphic to R, C, or the

division ring Q of real quaternions.

We now proceed to the proofs of these theorems.

Lemma.    Let H be a nontrivial left central maximal cone of a ring A.

(a) If a £ H, then 2£0 Ä^'+ILi «^=0 for some h0, ■ ■ ■ ,hmeH
andny,--- ,nmeNv{0}.

(h) If for every nonzero a, b e H—H, ab is also nonzero, then A has no

proper divisors of zero and M=H\{0} is a multiplicatively closed subset that

is left and right cancellable.

(c) Assume that for every nonzero a, b e H—H, ab is also nonzero. If for

some nonzero a e A, 2™0hiai+2Zi «¿ai=0, where h0, - - • , hm e H and

ni, ' * ' > nm 6 N(J{0}, and if m is minimal, then h0r¿0.

Proof, (a) Since H is left central, H(a)={2Lohiai+2ï=iniai:

h0, • ■ ■ , hk e H and nu---, nh e NU{0}} is a subsemiring of A that

properly contains H. Hence H(a)r\—H(a)?£ 0, so for some x, y e /7(a),

x= —y. Gathering all terms on the left side of the equation and introducing

zero terms as needed, we obtain the desired result.
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(b) Assume am=0, aEA, mEM. If a+m e H, then aeH—H, so

û=0 by hypothesis. If a+m $ H, then from (a), 2?=o h'i(a+m)i+

2{Li «¿(a+w)¿=0 for some /¡Je H and «i e NKJ{Q). Since w?íO and // is

conic, this can be written as 2¿=o'V+]Eí=i«íu,=0 for some hi e H,

where h07¿0. Multiplying on the right by m, we get h0m=Q, which contra-

dicts the hypothesis. Hence a+m 6 H. Thus, a=0. The proof that ma=0

implies a=0 is similar; simply multiply on the left by m and use the left

central hypothesis.

Now assume xy=0 with x, y e A. Let m e M. If x+m, y+m 6 H, then

x, y e H—H, so we may assume x+m <£ H. Then as above, 2¿=o h{x*+

2ÎU k2x¿=0 for some A, e //and «¿ e NKJ{0}, where /»„y^O. Multiplying on

the right by y, we get hoy=0, whence y=0 from above. The proof is

similar if y+m £ //.

It is clear that M is multiplicatively closed.

To show M is right cancellable, suppose ab e M and b e M, but a $ M.

Then a$H,so 2™« M'+Iti «¿a¿=0 for some *< e // and nt e JVu{0}.

Since ab e H and // is left central, by induction one shows that for

1=/=m, aibm=gibm~i for some g, e /Y. Thus

¿=0 <=1

Since A has no zero divisors, one shows that either Ai^i¿»m_í>íO or

nigbm'i7é0 for some / = 1, • • ■ , m. But since terms of this sort belong to H,

the above equation contradicts the fact that H is conic. Hence, a e M.

Therefore, M is right cancellable. The proof that M is left cancellable is

similar.

(c) Suppose m is minimal and A0=0. Multiplying on the left by any

nonzero h e H, we get

(|(A/Ii. + »!/I)ai-1)a = 0.

Hence by (b), 2£U ihhi+nih)ai~1=0, which contradicts the minimality
of m. Thus, h07¿0.

Proof of Theorem A. Using part (b) of the Lemma, one shows as

in the proof of [3, Theorem 1] that A' = {ajb:a e A, b E M} is a ring with

identity 1 and at-^ba/b is a monomorphism Q:A-*A' such that for each

b E M, 6(b) is invertible in A'. One easily checks that H' = {ajb e A':aE H}

is a cone in A' containing 1, every nonzero element of H' has an inverse

in H', and 6:A-+A' preserves order.

Now let x\y e A'\H'. Then x$H,so J°L0 h^'+^Zi nixi=0 for some

hi e H and k¿ e A/u{0}. Assume m is minimal so that by (c) of the Lemma,
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A07¿0. Now by definition of the operations in A', it follows that (x¡yY=

xi\fi for some J\ e M, and

/z0      f=1   /z0   \y/      i=1   h0   \yf \        i=1 i=1       //

= ho(0)/ho = 0.

Hence 2T-i KWyY- ~"%lh, where h'^hj^+n^fl^eH', i=\,
■ • • , m. Since h07¿0, hl¡h0 has an inverse hö1 e H', so

2h^h'ß)=-L

Thus H' is a 1-hemiring of A'. Also x/j has — 2T=i fiö1f>'i(xlyY~1 as left
inverse, so every element of A' has a left inverse.

(2) As in the proof of [3, Theorem 1], the commutativity of H implies

that H' is left central in A', and part (b) of the Lemma implies that A'

is a division ring.

(3) Since H-H=H\J(-H), one easily checks that F=H'u-H' is a

subfield of A'. As in the proof of [3, Theorem 1], F is contained in the

center of A'. The result follows.

(4) This is an immediate result of (3) and the definition of multiplication

in A'.

Definition. Let H be a cone of a ring A and let u e H commute with

every element of H. We say that u is a weak H-unit if for every a e H there

exists ne N such that nu—a e H.

Proof of Theorem 1. By Theorem A, there exist a conic l-hemiring

H' in a ring A' with 1 and an order preserving monomorphism A-+A',

where every nonzero element of H' has an inverse in H'. Let a\b e Ä. As

in the proof of [3, Theorem 1], since H is archimedean and b is a nonzero

element of H, nb—aeH for some n e N, so n\—a¡b=(nb—a)¡beH',

whence 1 is a weak H'-nnit. Thus by [1, Proposition 7], there exists an

order preserving monomorphism H'—H'-*R. In particular, this implies

that H is commutative and H—H=HU(—H). The result now follows

from (3) and (4) of Theorem A.

Theorem 2 follows from Theorem 1 just as in [3].

In Theorem 3, necessity is an immediate result of Theorem 1 and

Frobenius' classical result on real division algebras. Since every conic

hemiring is a maximal cone, sufficiency follows at once from [3, Theorem

3].
In Theorems 1 and 2 it was hoped that as in the corresponding theorems

of [3], it would suffice for H to be archimedean with respect to a single

element, that is for H to contain a weak //-unit u. But as the following



1973] EMBEDDING  A RING  IN A  DIVISION  ALGEBRA 41

example shows, a stronger requirement is needed in order to embed H—H

in R as an ordered subring.

Example. Let A be the subring of C[0, 1] generated by the constant

function 1 and the identity function /. Then A = {'£?=0njIi:n1¡eZ, m a

nonnegative integer). Let P={fe A :f(x)^0 for all x e [0, 1]}. Then £ is a

cone and for every/6 A, n\ —fe P for some n e N. It is easy to see that A

has no proper divisors of zero. Now by Zorn's lemma P is contained in a

maximal cone H. Then H—H has no divisors of zero and for every non-

zero feH, nl—fePçH for some neN, and H is left central since

C[0, 1] is commutative. However any embedding of H—H into R as an

ordered subring would yield a similar embedding of P—P into R. But no

such embedding can exist since g2 is a nonzero element of P, but no

n e N exists such that ng2—g e P.
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