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Abstract. If Mis a (not necessarily complete) riemannian mani-

fold with metric tensor£,,, and/is any proper real valued function

on M, then M is necessarily complete with respect to the metric £„=

gn + iSf/dx'XBf/dx'). Using this construction one can easily prove

that a riemannian manifold is complete if and only if it supports a

proper function whose gradient is bounded in modulus.

1. It is known that every differentiable manifold supports a complete

riemannian structure. Indeed, Nomizu and Ozeki [6] have shown that

every riemannian manifold is conformally equivalent to a complete

riemannian manifold. In this present note we shall describe a method for

constructing complete riemannian metrics which is exceedingly simple and

provides a necessary and sufficient condition for the completeness of a

riemannian structure. Namely, we shall show that a riemannian manifold

is complete if and only if it supports a proper function whose gradient is

bounded in modulus.

We begin by recalling some basic definitions. All manifolds under dis-

cussion will be assumed to be connected paracompact Hausdorff spaces

which are locally homeomorphic to open euclidean «?-discs. A riemannian

manifold M of class C3 with metric tensor g=(gtí) is said to be complete if

either of the following two equivalent conditions hold:

(i) Every geodesic arc y=y(t) can be extended for all values of t.

(ii) M is complete with respect to the distance function d(p, q)=

(infimum of the set of arc lengths of paths joining p to q).

Recall that in order for M to be complete it suffices that there exist a

single point p such that every goedesic y=y(t) with y(0)=p can be ex-

tended for all values of /; also, every pair of points of a complete rie-

mannian manifold can be joined by a geodesic of minimum length. (For

details and references see e.g. [4] or [5].) If ¿>=(¿>fJ.) is a symmetric tensor

field we write (btí)>0 to indicate that the form (£„(/>)) is positive definite

at every point/7 of M; i.e., that 2 bij(p)^i^j>0 for every/? in M and non-

zero vector £ in TB(M). By definition a riemannian metric is a symmetric

tensor field g=(gi}) of class C2 which is positive definite at every point.
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Finally, we recall that a continuous map/is said to be proper iff~l(K) is

compact whenever K is compact. Our main results are contained in the

following two theorems :

Theorem 1. Let M be a (not necessarily completé) riemannian manifold

of class C3 with metric tensor g=(gif), and let f be any proper real valued

function on M of class C3. Then M is complete with respect to the metric

g=(gu) "here

(D |«-ft,+/t/i     Vt~W*fi-
Theorem 2. Let M be as above. Then M is complete with respect to g

if and only if there exists a proper C3 function fon M such that

(2) (gii-fifi)>0.

Equivalently, a riemannian manifold is complete if and only if it supports a

proper C3 function f whose gradient is bounded in modulus, (| V/| ^constant).

2. Proof of Theorem 1. In a few words, to prove the theorem we first

observe that g is the metric that g induces on the graph off, and then use

the propriety off to show that its graph is Cauchy complete.

Let the product manifold MxRhe endowed with the usual product

metric, so that the element of arc on Mx R becomes ds2= 2 gu dxidxi+

dz2 where x=(x\ ■ ■ ■ , xm) represents a local coordinate chart on M and z

a general point of R. The graph off will be defined to be the subspace of

MxR which consists of all pairs {(p,f(p))\p £ M] and is endowed with

the obvious differentiable structure which makes G diffeomorphic to M.

Hereafter we identify G with M. Now g is the metric which G inherits from

its embedding in Mx R, and therefore the theorem will be proved once we

show that every g-Cauchy sequence in G contains a ^-convergent sub-

sequence.

But if {(pn,f(pn))} is a Cauchy sequence in G, then {/(/?„)} is a Cauchy

sequence in R because

dG[(P, *), (P', z')] = dMxR[(p, z), (p', z')] = \z - z'\.

Therefore by passing to a subsequence we can assume that f(p„)—>-z

for some z in R, so that {z,f(pi),f(p2), • - •} is a compact subset of R. But

{pi,P2, ■ ■-)cf~1{z,f(Pi),f(P2)r • '} and / is proper. Therefore the

sequence {/?„} contains a convergent subsequence since it is contained in a

compact set.

Remark 1. The proof generalizes the following construction : Let A he

a closed subset of R2 and let/be a C3 function defined on R2—A. Let G be

the surface embedded in R3 which lies over R2—A and is given by the
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relation z=f(x, y). Then G is complete (with respect to the induced metric)

if/is a proper function (on R2—A).

Remark 2. Let g and g be two metric tensors on M. It is a trivial

matter to verify that M is complete with respect to g if M is complete

with respect to g and (ga—ga) is positive semidefinite at every point.

Hence from (1) it follows that the graph of any function on a manifold is

complete if the manifold is itself complete.

3. Proof of Theorem 2. Let/be a proper C3 function which satisfies

(2). Then the assertion that M is complete with respect to g is an immediate

consequence of Theorem 1 and the relation gu■=(gi};—//•)+/•/-

We shall raise and lower indices in the usual tensorial fashion and employ

the tensor summation convention. If/ satisfies (2), then |V/|<1; for

multiplying (2) by ffj and summing on repeated indices we get |V/|2—

|V/]4>0. On the other hand suppose |V/| ^constant. Multiplying/by a

suitably small constant we can assume that |V/|<1. Then for any vector

f we have

tuft' - (fié)(m = m2 - w, o2 > ni2 a - iv/?).

I-e- (^u-//)>0, and we have shown that the existence of a proper

function satisfying (2) is equivalent to the existence of a proper function

whose gradient is bounded in modulus.

Finally, to complete the proof we have to show that every complete

riemannian manifold M supports a proper C3 function/whose gradient is

bounded in modulus. By a well-known theorem of Nash we can assume the

existence of an isometric embedding j:M->-RN for some N. Then M is

complete iff M is a closed subspace of RA iff/' is proper. Let w=(wx, • • • ,

wF) be standard euclidean coordinates on RN, and let /r(vw)=log(l -|-|iv[2).

Then Fis a proper function on RN and |VF|^1. Let/=F°/'=.F|M. Then/

is proper because the composition of proper maps is proper; and |V/| ^ 1

because at each point p of M, V/(/?) is the orthogonal projection of

VF(/>) onto T»(M), so that |V/(/>)|^|VF(/?)|.

4. The theorem of Nomizu and Ozeki is an easy consequence of Theorem

2. In fact, we have the following:

Corollary. Let f be any proper C3 function on M and let g=(gi}) be

any metric tensor on M. Then M is complete with respect to the metric g

where gtí^vñ*gtí.

Proof. Let V„, V-, \-\g, |-|; denote the gradient operators and norms

associated with g and g respectively. Then

|Vj/l?=|V5/|2exp(-|V3/|2)<l/e.
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Remark. The existence of proper functions on M is provided by

Whitney's embedding theorem, which asserts that a smooth manifold M

can be embedded as a closed sub manifold of Rk (for k sufficiently large).

The existence of such an embedding being given, one can then construct a

proper function on M exactly as was done in the last section. Whitney's

theorem also guarantees the existence of complete riemannian metrics,

for as we have already mentioned in the last section, the metric induced by a

closed embedding is necessarily complete.

5. We conclude by mentioning some applications to hamiltonian

systems. Let F be a smooth function on M, and consider the hamiltonian

system associated with the "potential" V. Conditions on V are known

which guarantee the completeness of the hamiltonian system ([1], [2], [7]),

but these conditions do not apply to the geodesic case (the case V=0)

unless M is compact. Moreover, these conditions often assume the com-

pleteness of the underlying riemannian manifold M. We now wish to show

how Theorem 2 can be applied to conservative dynamical systems by means

of the Jacobi metric.

Recall that the Jacobi metric gu associated with a potential Fis given by

gij=:(h— V)ga, where A is a constant. It is well known that every trajectory

of the dynamical system with total energy h can be represented as a re-

parametrized geodesic with respect to the Jacobi metric. Suppose for

simplicity that F<0, so that gu is positive definite for every h>0. Then

according to Theorem 2, gtí is complete if and only if there exists a proper

function/on M such that |V/|2^A- V.

Results of this kind being established, one can then apply the standard

results of riemannian geometry to obtain the existence of trajectories with

arbitrary given energy (within a certain range) which join two fixed points

and have arbitary topological type. (Cf. [3].) Moreover, in certain situ-

ations one can use the completeness of Jacobi metrics to establish the

existence of periodic trajectories. (Indeed, this seems to be the geometric

content of Assumption [A] in [3].)

Remark. There is no connection between the completeness of hamil-

tonian systems and the completeness of the corresponding Jacobi metric.

For example, in euclidean space with the origin removed, let V(x) =

— l/|x|" with n_2 (so that V corresponds to a central force which is in-

verse cube or stronger). Then for A>0 the Jacobi metric is complete (but

the hamiltonian system is not). Proof. In Theorem 2 set/(.x-) = log|.v|.
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