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A QUASI-LINEAR EVOLUTION EQUATION
AND THE METHOD  OF GALERKIN

R.  W.   DICKEY1

Abstract. In this paper it is shown that under specified con-

ditions on the initial data a certain infinite coupled system of ordinary

differential equations has a solution satisfying an auxiliary con-

vergence condition. The infinite system discussed is essentially the

Galerkin expansion of the solution to a given quasi-linear wave

equation. The results obtained suffice to prove the existence of a

solution to this wave equation.

1. Introduction.   The purpose of this paper is to prove the existence of

solutions to the infinite system of ordinary differential equations

f, + C0j% + Cxj i (J IT, cos /x)cos;x dx = 0,
(1.1) Jo \l=1 '

j = 1, 2, • • •, oo

(C0>0, Q^O) which satisfy the initial data

(1.2a) 7X0) = «„

(1.2b) 7,(0) - ft,

and the auxiliary condition

(1.3) %+T) < co.

The infinite system (1.1) is related to the quasi-linear 'string' equation

(1.4) wtt - (a0 + axwx)wxx = 0        (a0> 0, o, ^ 0).

In fact it may be shown that proving the existence of a solution to (1.1)

satisfying (1.2) and (1.3) is sufficient to prove the existence of a classical
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solution to (1.4) satisfying the initial data

00

(1.5a) w(x, 0) = f(x) = 2 a3 s'n jx,
3=1

00

(1.5b) wt(x, 0) = g(x) = 2 & sin ;'x,
3=1

and boundary data

(1.6) w(0, t) = w(7r, i) = 0.

The actual details are discussed at the end of §2. For present purposes it

suffices to note that if equation (1.4) has a sufficiently differentiable solution

satisfying the boundary conditions (1.6), this solution can be written in the

form
00

w(x, 0=2 rX0«n jx.
3=1

The system of equations (1.1) results upon formally substituting this

Fourier series into (1.4), multiplying by sin/x, and integrating the resulting

expression from 0 to 77. Related results for the more elementary Föppl

string equation [1] and Von Karman beam equation [2] have been dis-

cussed in [3], [4], and [5]. Existence and nonexistence of solutions to

equations of the form (1.4) has been treated in [7], [8], and [9].

2. Existence. In order to prove the existence of solutions to (1.1) it is

convenient to begin by discussing related finite systems of equations. In

particular define functions T¡ N to be solutions of

(2.1) fLN + CJ%,N + Cxj]   (2 ITIM cos /x) cos jx dx = 0

satisfying (1.2) for j—\,2, • ■ ■ , N and F,.v=0 for j>N. It is of course

necessary to show that (2.1) actually has a solution. However, this is easily

done since (2.1) has associated with it a Lipschitz constant (depending on

N). Thus the method of successive approximation may be used to prove the

existence of a solution locally (cf. [6]) and the continuation of the solution

for all /_0 is guaranteed by the fact that (2.1) is a Hamiltonian system, i.e.

solutions of (2.1) satisfy the energy identity.

(2.2) I t}M + C0fj*T*N + & ¡'If JTtJt eosjx) dx = hN
3=1 3=1 l J°    W /

where

N N C    f* I N V
(2.3) hN = 2ß) + Cü%M + i\   (2>««/*«/*.

, = 1 3=1 2J°    V=l /

The above procedure cannot be applied directly to (1.1) since, due to the

nature of the nonlinear term as/->-oo, (1.1) is not Lipschitz continuous.
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Thus the object will be to show that solutions of (2.1 ) converge to a solution

of (1.1) as N^- oo.

If A y converges as A7—*oo, i.e. if

(2.4) lim hN = h < ce,
/V-oo

it follows from (2.2) that \Tj¡N\ and |F,a,| are uniformly bounded inde-

pendent of N. Consequently the Arzela-Ascoli lemma (cf. [6]) implies that

on any closed subinterval 0^/^/*<oo (/* fixed but arbitrarily large)

there is a subsequence {TjN(} which converges uniformly to a continuous

function Tj on the interval Oíí/5í/*. In order to prove that the functions

Tj are solutions of (1.1) it is necessary to obtain a better estimate on the

functions T¡ N than that furnished by the energy estimate (2.2).

The necessary estimate follows upon multiplying (2.1) by j*TJrN and

summing over/ The resulting expression may be written

(2.5)     \Mf ?nN+ Col/T^O + Cx((wTf,
'2- dt YJIi j=x 1

where

(2.6) ww, = f T,,iVsinyx

and

(2.7) («, v) =     u(x)v(x) dx.
Jo

After two integrations by parts it is found that

/-> o\     K   <-V>\S      IN)     v        ci   W)    (A7)*      IN) ,    ,    ~,    <Ar>8   Œ)      IN) ,
(2.8) ((wx   ), wxxxxxt) = 6{wx   wxx  , wxxxt) + 3(wx    wxxx, wxxxt)

or

/   (iV)3      (N)     v 3/j/JA/   IN)*      IN)\
<W*    . Wxxxxxt) - 2(d/dt){wx     , wxxx )

(2-9) (JV)    (AT)       (A')\    ,    ¿,    (ZV)    UV)'      (A1),
- 3(wx   wIt , wxxx > + 6(wI   wxx  , wxxxt).

Equations (2.5) and (2.9) imply that solutions of (2.1) satisfy the identity

(2.10) (d/dt)EN = 6(wi»Wx?, „«ft - 12{wx»Vxf, wx«xxt)

where

EN*=2lJlTÎ.N+C0Z,J*T*N
i=X 3=1

(2.11) + 3^(2 M.»C0S^J(2 A» cos;xJ dx

/"W   \/    W      WK    1    f\/^  I   \/    (N)      (,V),    ,    ,,,  ,    (AT)2      (AH?
= (2¡ir)(wxxt, wII( ) + (2C0/it)(wxxx, wxxx) + 3Cx(wx    , wxxx >.
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The object now is to estimate the right side of (2.10) in terms of EN. For

this purpose it is convenient to note that, since w(iV,(0, t)=w[N)(7r, t)=

0, Rolle's theorem implies the existence of a point £=£(r) such that

w™ (£, r)=0. Therefore

(2.12) i*w»i=| j'w%> dx\ ûjy™\ dx=(*jyxN/ dxj\

In addition wx*\0, 0=0 so that

(2.13) |w<f | = | J\«£ dx\ ûjy™\ dx = (,£w¡£ cixj/2.

Similarly it is easily shown that

(2.14) \w^\^.^rjyx^dxj2.

The inequalities (2.12), (2.13), and (2.14) yield pointwise estimates on

H-f, wxNx\ and wf? in terms of EN. Thus

(2.15) |*T| < (772/(2C0)l/2)E1A(2,

(2.16) |0 = (77/(2C0)1/2)£^2,

(2.17) lOá(«W-

The first term on the right of (2.10) can be estimated by

(2.18) Kw^wir, w^J)\ = -¿¡ £A- Pw£>' * = -£¡ F2,
zC0 "       Jo 4C0

For the second term on the right of (2.10) integrate once by parts so that

,.   (iV)    (iV)2       LV>..        ..    OV>'       W),    ,    -,    (A7)    (A7)    (A7)       (N)..
I<w«   w„  ,wxxxt)\ = \(wxx  ,wxxt) + 2(wx   wxxwxxx,wxxt)\

1/2

■^„(jy^dxjy^dxj

(2.19)
\l/2

< (tta¡4C*2)E\, + (774/2C30/2)£;K-

In view of the inequalities (2.18) and (2.19) the identity (2.10) can be re-

placed by

(2.20) dENldt < (21774/2C?/2)E2v.

The inequality (2.20) yields the desired estimate on Ew.
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Lemma 1.   Assume

lim EN(0) = e - 2?fi + C« 2 AÎ

(2-21) C" /x \2/°° \2
+ 3C,     |2 ;«i cosy'x J I 2Aj cos;'x| dx

i.e. assume EN(0) converges as N-*oo. Then EN(t) is uniformly bounded

independent of N on any closed subinterval 0^/^/*</,. where

(2.22) tc = 2C0/72l774e.

Proof.   The inequality (2.20) implies that

EN(0)
(2.23) £v(/) <-

AW-1-(217t4/2O£a'(0)z

if

(2.24) 0 ^ / < 2Cu/2/21tt4£jv(0).

The lemma follows after taking the limit as N->cc.   Q.E.D.

The bound on EN furnished by Lemma 1 is the key feature in proving

the functions T¡, i.e. the limits of the subsequence TjN., are solutions of

(1.1). In fact this result is a consequence of the following two lemmas:

Lemma 2.    Ife<cc (cf. (2.21)) the infinite series

(2.25) J/t;2
3 = 1

converges in the interval 0^/^/*</c.

Lemma 3.    If e<oo the functions w(A'' and wfJ *' converge to w and wx,

00

(2.26) w = 2 T¡ sin jx,
3 = 1

as Ni-roofor t in the interval 0^/^/*</c.

Proof of Lemma 2.    The sequence of functions

(2.27) s„ = ¿/r;
3 = 1

is monotone increasing i.e. Sn+x^Sn. Thus the convergence of Sn as

n—*oo will follow if it can be shown that Sn is bounded independent of n.
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However, this is a consequence of Lemma 1 since

S   <

(2.28)
3=1 3 = 1

1S.-2W*
3 = 1

c0

The function Fa', is bounded independent of N¡ in the interval 0^/^r*.

Therefore the lemma follows upon taking the limit as JV,—»-co.   Q.E.D.

Proof of Lemma 3. The fact that w and wx converge on the interval

0"_r^r* follows from the Schwarz inequality and Lemma 1. In order to

show that w(f'y-*wa note that Lemma 1 implies that Tf^Mjj* and 7f.N¡<

M¡j* where M is a constant determined by the bound on EN in the interval

0</<r*. Therefore

_ w(-v<»l <
71

¿XT,- TLN)cosjx

.V.

(2.29) + 2 J w + 2 J \Ti.*<\
j=n-rl

+ if\Ti-Tj,Ni\+2Mm2   \
i=n+lJ3 = 1

We can make the right side of (2.29) small by first choosing n and then
.,w.)choosing A^. The proof that w   •->w is done in a similar manner.   Q.E.D.

Theorem 1. The functions T¡ are a solution of (I.I) satisfying the initial

conditions (1.2) and auxiliary condition (1.3) in the interval 0^i"^/*</c //

e<oo.

Proof.    The functions TjN. satisfy the Volterra integral equation

TiJti = «, + ß,t - ¡\t - r){C0fTiiNi + CJ(w^\ cosjx)} dr
Jo

= a, + ß,t - G,*™*(2.30)

iot j=\, 2, • ■ • , N{. The object is to show that the functions F, satisfy

a similar equation. For this purpose write (|H|=maxostSÍ« |-|)

lr3-a3 BA + GjWx\ = \Tj- TiJri - GjWy + GjWx\

(2-31) = || T, - TiJftl + C0ft* || T, - TjMt\\

+ C1yi*||(w^'3-<cosj.x)||.

The right side of (2.31) approaches zero as Nt-+co. Therefore F3 is a
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solution of

(2.32) T, = a3 + ft/ - G>x.

The theorem follows on differentiation of (2.32).    Q.E.D.

The essential feature in the proof of Theorem 1 is of course the bound

obtained in Lemma 1. The interval over which this bound is obtained, i.e.

0^/^/*</c, can be increased slightly by a more careful estimate of the

right-hand side of (2.10). However, since no real qualitative change in the

results are obtained the details are omitted. It is worth noting, however,

that although the interval of existence 0^/^/*</c is finite it may be large

indeed. In fact as the initial data gets small (e-+0) or as C0->oo the interval

of existence also becomes infinite, i.e. /„-»-co.

The most serious difficulty in the above development is that, because of

the use of the Arzela-Ascoli lemma, the existence proof is not truly con-

structive. Thus it is conceivable that there exists a second sequence of

functions, say {T¡ N}, converging to limit functions which differ from T¡

and hence define a different solution to (1.1). Consequently a uniqueness

theorem plays an important role in the proof of existence. In fact it can be

shown that (1.1) has at most one solution satisfying the initial data (1.2)

and auxiliary condition (1.3). However, since the proof of this fact is

relatively straightforward (cf. [4]) it will not be included here.

In §1 of this paper it was indicated that the proof of existence of

solutions to (l.l) satisfying the conditions (1.2) and (1.3) is sufficient to

prove the existence of a classical solution to ( 1.4) satisfying the conditions

(1.5) and (1.6). To see why this is true assume that the periodic continuation

of f(x) and g(x) is sufficiently differentiable to guarantee that

2  Ç"
(2.33a) oLj = —     f(x)sinjx dx,

IT Jo

2     f*
(2.33b) ß, = ~     g(x)sinjx dx

IT Jo

satisfies the condition (2.21). In this case Theorem 1 guarantees the

existence of a solution to (1.1) satisfying the conditions (1.2) and (1.3) in

the interval 0^/^/*</c. It follows from (1.3) that the function

(2.34) w(x, /) = J T¡(t)sin jx
3=1

is twice continuously differentiable with respect to x and /. Thus if the non-

linear operator defined by (1.4) is applied to (2.34) the result is a function,

say C(x, t), which is certainly continuous. The object is to show that it is

zero. However, this follows upon noting that (C(x, /), sinyx}=0 for all
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j since this is just the infinite system (1.1). Therefore C(x, /) is a continuous

function which is orthogonal to every member of a complete orthogonal

set. The conclusion is that C(x, /)=0 and hence (2.34) is the desired

solution.

References

1. R. Narasimha, Non-linear vibrations of an elastic string, J. Sound. Vib. 8 (1968),

134-146.
2. S. Woinowsky-Krieger, 77ie effect of axial force on the vibration of hinged bars, J.

Appl. Mech. 17 (1950), 35-36. MR 11, 558.
3. R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J.

Math. Anal. Appl. 29 (1970), 443-454. MR 40 #6831.
4. -, Infinite systems of nonlinear oscillation equations related to the string, Proc.

Amer. Math. Soc. 23 (1969), 459^168. MR 40 #458.
5. J. M. Ball, Initial boundary value problems for an extensible beam, J. Math. Anal.

Appl. (to appear).
6. E. A. Coddington and N. Levinson, Theory of ordinary differential equations,

McGraw-Hill, New York, 1955. MR 16, 1022.
7. N, J. Zabusky, Exact solution for the vibrations of a nonlinear continuous model

string, J. Mathematical Phys. 3 (1962), 1028-1039. MR 26 #4067.
8. P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial

differential equations, J. Mathematical Phys. 5 (1964), 611-613. MR 29 #2532.
9. R. C. MacCamy and V. J. Mizel, Existence and nonexistence in the large of solutions

of quasilinear wave equations, Arch. Rational Mech. Anal. 25 (1967), 299-320. MR 35

#7000.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin

53706


