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PD-MINIMAL SOLUTIONS OF Au=Pu ON OPEN
RIEMANN SURFACES

WELLINGTON H.  OW

Abstract. By means of the Royden compactification of an

open Riemann surface R necessary and sufficient conditions are

given for a Dirichlet-finite solution of Au=Pu (P^O, P&O) to be

/"¿»-minimal on P. A relation between PD-minimal solutions and

¿VD-minimal solutions is obtained. In addition it is shown that the

dimension of the space of P/)-solutions is the same as the number of

/"-energy nondensity points in the finite dimensional case.

Let P(z) dx dy (z=x+iy), P^O, be a nonnegative C1 differential on an

open Riemann surface R. Denote by PD(R) the Hubert space of all Dirich-

let-finite solutions of the second-order selfadjoint elliptic partial differential

equation

(1) A«(z) = P(z)u(z)

on R where Au(z)dxdy=d* du(z). The scalar product is given by (u, v) —

DR(u,v)=$RduA*dv, not the energy integral ER(u, v)=DR(u, v)+

$RP2uv. Observe that the only constant solution of (1) is the identically

zero solution. The classification problem with respect to A«=P« was

initiated by Ozawa [9] who investigated the class PE(R) of energy-finite

solutions of (1) on R. The class PD(R) itself was first considered by Royden

[10] in 1959. A little later the works of Nakai ([5], [6]) gave impetus to the

theory of the class PD(R). Recent contributions to the study of PD(R) are

contained in papers by Nakai ([7], [8]), Glasner-Katz [2], and Singer

([12], [13]).
The energy integral ER(u)=ER{u, u) plays the same role as the Dirichlet

integral DR(u) = DR(u, u) in the harmonic case, i.e. solutions of Aw=0,

and the class PE(R) likewise shares many properties possessed by the class

HD{R) of Dirichlet-finite harmonic functions (see, for example, Ozawa

[9], Glasner-Katz [2], Kwon-Sario-Schiff ([3], [4])). However, the class

PD(R) is quite different in nature from HD(R). Nevertheless it does share

Received by the editors April 23, 1972.

AMS (MOS) subject classifications (1970). Primary 30A48, 31A05.
Key words and phrases. Royden harmonic boundary, P-energy nondensity point,

harmonic projection, /"D-minimal function, //£>-minimal function, Riesz decomposi-

tion.
© American Mathematical Society 1973

85



86 W.  H. OW [January

some common properties with HD(R). For example, Nakai [8] has shown

recently that the Virtanen identity Ohd=Ohbd is also valid for PD(R);

namely, OPD=0PljD, where PBD{R) is the class of bounded FD-functions

on Ä.

The purpose of this paper is to give a necessary and sufficient condition

for a FD-function to be FZ)-minimal. Although the statement itself is

similar to that for //D-functions new techniques are required for the proofs.

The most important tool used is the Royden harmonic boundary and in

particular the subset Ap of F-energy nondensity points introduced by

Nakai [7]. Further we give a relationship between //D-minimality and PD-

minimality. Finally we also state a relation between the cardinality of A„

and the dimension of PD(R) whenever the latter is finite. For the reader's

convenience we shall briefly review some preliminaries in §1.

1. Let R* be the Royden compactification of R (for details see e.g.

Sario-Nakai [11]). Denote by Y=R*—R the Royden boundary of R and

by A=A(J?) the Royden harmonic boundary of R, consisting of points of T

which are regular for the harmonic Dirichlet problem. A point Z* in A

will be called a P-energy nondensity point (cf. [7]) if there exists an open

neighborhood U* of Z* in R* such that

(2) f      Grj{z, l)P{z)P{i) dx dy d£ dr¡ < oo        ({ - f + ir¡)
Juxu

for z e U, where U= U* r¡R and Gv is the harmonic Green's function of U.

2. If R is parabolic then PD(R)={0} (cf. Royden [10]). We therefore

assume throughout the paper that R is hyperbolic. Denote by M(R) the

class of all Dirichlet-finite Tonelli functions on R and by MA(R) the sub-

class of M(R) consisting of functions g such thatg|A(/?)=0. We then have

the orthogonal decomposition (cf. [11]):

MOR) = HD(R) + MA(R).

The subset M(R) consisting of all bounded members of M(R) is called the

Royden algebra of R. It is known that M(R) is closed under the lattice

operations/Ug=max(/, g), a.ndfr\g=min(f,g). Moreover M(R) has the

orthogonal decomposition

M(R) = HBD(R) + M&(R),

where HBD(R) is the class of bounded harmonic functions on R and

MA(R) the subclass of M(R) consisting of functions g with g|A=0.

For each/g ß(R) we denote by nR/e HD(R) the harmonic projection

off on R characterized by/-IIR/e M¿(R). Since PD(R)^M(R) we may
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define the operator

(3) nR\PD(R):PD(R)^HD(R)

which is a vector space isomorphism from PD{R) onto UR(PD(R)) such

that w>0 is equivalent to IInw>0 and

(4) sup|U| = sup|IV|       (cf. [12]).
R R

Moreover it can be shown that if « 6 PD(R) then

(5) u = URu + TRu

where

TRu = - ±- f GR(; DP(0"(D dldr,       a = I + ir¡)
LIT JR

and also

(6) DR(u) = DR(IlRu) + ;f- f     GR(z, t)u(z)utt)P(z)Ptt) dx dy d£ dr¡
2tt Jrxr

(cf. [8]). If Q, is an open subset of R with smooth relative boundary dû,

(which may be empty in case Q=R) then for u ePD(ù) we obtain rep-

resentations for w and Dn(u) as in (5), (6). Moreover

(7) Tnu | (du) U(OnA) = 0,

where Ù is the closure of £2 in R*.

The following is an immediate consequence of the maximum principle

for PD(R) (cf. Glasner-Katz [2]):

Lemma 1.   IfuePD(R) and w|A=0 then t/=0.

3. Recall that Ap is the set of P-energy nondensity points of A. Now we

state (cf. Nakai [7]):

Lemma 2.   ¡fue PD(R) then m|A-Ap=0.

Proof.    Let Z0 e A—Ap. Then for each neighborhood U* of Z0 in R*,

f      Gv(z, OP(z)P(Q dx dy d£ dr, = oo,
Juxu

U=U* OP. Suppose to the contrary that a(Z0)#0. Since each uePD(R)

possesses a Riesz decomposition (cf. [8]) as the difference of two non-

negative PI»-functions on R we may assume that «_0 and w(Z0)>0. Since

u is continuous at z0 there exists a neighborhood U* of Z0 in R* such that
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«^<5>0 in  U*.  But from  (6) and the fact that F>¡7(m)^F'a(m)<oo

(U=U*nR) we have

Drj(u) = Duiflvu) + -±- f      Quiz, Ou(z)u(QP(z)PU) < CO,
277 Juxu

which is impossible. Hence w(Z0)=0 as asserted.

Corollary 1.   Ifu e PD(R) and w|Ap=0 then u=0.

The proof follows immediately from Lemmas 1 and 2.

4. A positive FZ)-function u on R which is not identically zero will be

called PD-minimal if for any v ePD(R) such that O^v^u there exists a

constant cv such that v=cvu on R (for //D-minimal functions see Sario-

Nakai [11]).

In contrast to //D-minimality which is characterized in terms of the

entire harmonic boundary A, PD-minimality is stated solely in terms of

A, as follows :

Theorem 1. A PD-function on R is PD-minimal if and only if there

exists an isolated point Z0 s Ap such that 0<h(Z0) and u=0 on Ap —{Z0}.

Proof. We first establish the sufficiency. Since A=AJîu(A—A,) it

follows from the hypothesis and Lemma 2 that u\A—{Z0}=0. Now

IlRu e HD(R) by (3) and from (7) we deduce that IInw(Zo)=w(Z0)>0 and

nHz/=0 on A—{Z0}. Hence YlRu is //D-minimal, and in particular strictly

positive and bounded (cf. [11]). From (4) it follows that u is bounded. For

any v ePD(R) with O^v^u on R it follows from the continuity of PD-

functions on A that v=0 on A—{Z0} and 0^t;(Zo)< co. Hence cvu—v=0

on A where cv=v(Z0)lu(Z0). By Lemma 1, v=cvu on R and u is PD-

minimal as was to be shown.

Conversely, assume that u is FD-minimal. Since w?É0 by Corollary 1

there exists a point Z0 e Ap such that w(Z0)>0. There exists a neighborhood

U* of Z0 as in (2). Suppose Z0 is not an isolated point of Ap. Then consider

any Z1€ A„ni/* with Z^Z^. We claim that w(Z1)=0. Suppose to the

contrary that u{Z^)>0. Note that we may assume that dU (U=U* (~\R)

is smooth to begin with since we may modify U suitably otherwise. Select

an/e M(t/) such that/(Z0)=l,/(Z1)=0,/|3L7=0, and 0</^l on U*.
Here M(U) is the Royden algebra of bounded Dirichlet-finite Tonelli

functions on U. Then h=Uv(fr\u) e HBD(U), O^h^u on U*, h\dU=0,
h(Z1)=0, and h(Za)=(fr\u)Z0. Using the approach of Nakai [7] we now

construct an appropriate w e PBD(R). We sketch the procedure here for

the sake of completeness. By the method of exhaustion it is seen that the

integral equation of the Fredholm type (I—Tu)v=h has a unique solution

v ePD(U), where / is the identity operator. Now v\dU=0, v(Z0)=h(Z0),
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v(Z1)=0, and 0_t;_/z_l. v is a Dirichlet-finite subsolution of (1). By the

exhaustion method again, and by the weak Dirichlet principle (cf. [8]) we

obtain a wePBD(R) such that £>=h>=1. Now w\AriU*=v\AfMJ* by
construction and w=0on A C\(R* — {/*). Therefore 0_w5íw on A and

hence on R. It follows that there is a constant cw such that w=cwu. But

w(Z1)=0=cwu(Z1)>0, a contradiction. Hence u{Z^)=0 as asserted.

Since u is continuous at Z0 and u(Z)=0 for any Z?íZ0 e U*(~\AP it

follows that Z0 is an isolated point of Ap.

To complete the proof we now show u\Ap—{Zo}=0. Observe that for the

function wePBD(R) constructed above, w(Z0)=(fnu)Z0, w\Ap—{Zo}=0

and 0_w_w on A^. Therefore w=cwu on R and so if there exists a Z e

Ap—{Z0} such that u(Z)>0 we obtain a contradiction vf(Z)=0=cww(Z)>0.

This completes the proof.

Corollary 2. If Z e Ap is isolated in A„ then there always exists a

u ePBD(R) such that w(Z)>0 and w=0 on A—{Z}. Also any PD-function v

on R has a finite value at Z.

For a proof of the second part we may assume w_0 on R since u has a

Riesz decomposition. If t>(Z)=co then for «=1,2, •■• the inequality

nu^v holds on A and hence on R. But this yields the contradiction v=ao.

5. A relation between PD-minimality and //D-minimality is given by

Theorem 2. // IT^ maps PD{R) onto HD(R) then u e PD(R) is PD-

minimal if and only ifURu e HD(R) is HD-minimal.

Proof. First assume uePD(R) is P£>-minimal. Then for any he

HD{R) with 0</j=nßw on R there exists ave PD(R) such that URv=h.

From (5) and (7) we see that u=URu and v=YlRv on A. Hence 0_t;_«

on A and so there exists a constant cv such that v—cvu on R. So h=URv=

cvURu as was to be shown. The converse follows similarly since IIH is one-

to-one.

6. In case 0_dim PD(R)< oo we have the following PD-function ana-

logue corresponding to that for //D-functions (cf. [11]) and for PE-

functions (cf. [2]):

Theorem 3. Ap contains exactly m points if and only if dim PD=

dim PBD=m.

Proof. First of all if m=0, i.e. A„= 0 then any u e PD(R) vanishes

on A by Lemma 2 and consequently w=0, i.e. dimPD=dimPPD=0.

Assume next that there are exactly »2_1 points Zl5 Z2, • • • , Zme Ap.



90 W.  H.  OW [January

Take neighborhoods t/,- of Zt such that t/¿ni7 = 0 (/?*/) in R*. Modify

(if necessary) each U{ so that 5C/f is smooth. Choose «¿ e HBD{U¿)

such that «¿13^=0, 0<7zi=l on £/<, and hi(Zi)=l. As in the proof of
Theorem 1 construct functions ut e PD{U¿) such that u^dU—O, ui(Zi)=l,

and 0_:i/j_:«f_'l in Ot. Setting «¡=0 on R — {/■ we in turn construct as

before v{ e PBD(R) such that i/;—^—1 on R. For a given t?, observe that

»i(Z,-)=0 for j^i since the Z, are regular points for the Dirichlet problem.

It follows that the vi7 z'=l, 2, • • • , m, are linearly independent in PBD(R)

and so dimP£>(P)_dimPPD(P)_7n.

Next let w ePD(R). Then w has a Riesz decomposition w=w1—vv2,

with w¿ ePD(R), wi=0 on P. We claim that h-¿(Z3)< oo, y'=l, • • • , m.

If not, say wi(Zj)=cc; then for c>0, wi—ct3|A_0 and so h^—ct,- on R.

But this implies h>,-(Z)=oo for Z e R, a contradiction. Since w\A—Ap=0

it follows that w= 2¿Li (wi(Z,)—w2(Zf))i)f on A and hence on R. Therefore

dim PX»=dim PBD=m.

Conversely if dim PZ)=dim PBD=m then Av cannot contain more than

m points. For if there exist at least m+\ points Z1; Z2, • ■ • , Zm+1 6 Ac

then as in the first part of the proof construct m+1 linearly independent

functions vu v2, • • • , vm+l e PBD, thereby contradicting dim PBD=m.

Hence Av has n points O^n^m. As earlier in the proof there exist n

functions v¡ e PBD(R) such that any w e PD(R) is a linear combination of

these Cf. We conclude Aj, has precisely m points; and this completes the

proof.

Added in proof. Results similar to those in this paper have been ob-

tained by J. L. Schiff (A note on the space of Dirichlet-finite solutions of

Au=Pu on a Riemann surface, Hiroshima Math. J. 2 (1972) (to appear).)
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