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ZARISKI’S THEOREM ON SEVERAL LINEAR SYSTEMS

ARTHUR OGUS!

ABSTRACT. We give a modern and fairly easy proof of (a slight
improvement of) an important theorem of Zariski. The result gives
conditions under which certain multigraded rings and modules
associated with » linear systems are finitely generated, in a very
strong sense.

Suppose L is a line bundle on a complete scheme X and R is a graded
subring of @, H°(X, L") whose degree one part generates L. Then
@vz>o H'(X, L") is a finitely generated R module. Zariski has given a
very useful souped-up version of this fact, working with several line
bundles simultaneously [1, 5.1]. Since his proof is difficult for newly
educated geometers to follow, it seems worthwhile to give a modern
proof. That is the only purpose of this paper.

Before we state our slight improvement of Zariski’s theorem, we must
make some definitions. By an “m-fold graded ring,”” we mean a ring G
together with a direct sum decomposition G=@ {G,:« € Z™} such that
the multiplication map factors through maps G,®G;—G,.;. We let
e;€Z™ be the element with 1 in the ith place and zeroes elsewhere. Let
G’ be the sub-G, algebra of G generated by terms of total degree 1.

1. DEFINITION. Let G be an m-fold graded ring, M a graded G module,
and / an integer between 1 and m. Then M is ““i-finite”’ if for some integer n,
the maps G, X M,—~M,,., are surjective whenever «;=n. If M is i-finite for
all i, we say M is “polyfinite.”’

2. PROPOSITION. If M is finitely generated as a G' module, it is poly-
finite. The converse holds if we assume that each M, is finitely generated as a
G, module and that M,=0 for any «,K0.

Proor. First prove the following easy statements:

2.1 If M is i-finite, so is the shifted module M(«) for any x € Z™.
2.2 If M and N are i-finite, so is M®N.

2.3 A quotient of an i-finite module is i-finite.
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Now it is clear that G’ is polyfinite as a module over itself, since all the
maps G, XG,—G,,,, are surjective, if «,=0. Moreover, any finitely
generated graded G’ module M is a quotient of a finite direct sum of
modules G'(f), one for each generator of degree —p. Thus, it is poly-
finite as a G’ module and hence as a G module.

To prove the converse, we see that if M is polyfinite, thereisa f € Z™
such that the maps G, x M,—~M,,, are surjective if a;=p,. Then we
easily see that @,s M, generates M as a G’ module. Since @, M, is
finitely generated as a G, module, it generates a finite G’ module, and the
proof is complete. [J

We can now state our version of Zariski’s theorem:

3. THEOREM. Let F be a coherent sheaf on a scheme X, proper over a
fieldk,andlet L,, - - - , L, be line bundles on X. Let " be an m-fold graded
subring of @ {HY(X, L}'®- - -®Lir):a € Z™ and «=0}, and let M be a
graded T' submodule of @,5o H"(X, FRLY'®- - -®L7r). If the linear
system ', has no base points for each i, then M is polyfinite.

Instead of proceeding directly with the proof of this theorem, we first
consider what is essentially the universal case.

4. PROPOSITION. Let k be a field, Vy, - - - , V., finite dimensional vector
spaces over k, and Z=P(V,)x- - - XP(V,,). If F is a coherent sheaf on Z
and if a€Z™, let F(o) be FRpi(Opw,(2))® - @pm(Opw,)(%m);
where p;:Z—P (V) is the projection. Then:

4.1 The natural map: G=S"(V1) ®* * * @S (V)= B, HY(Z, Oz(x))
is an isomorphism of m-fold graded rings.

42 HYZ, 0z(x)=0if¢>0 and «a20.

43 @D {HYZ, F(x)):« € Z™ and « =0} is a finitely generated G module,
for all q.

44 Ifg>0, H(Z, F(x))=0 for all «3>0.

Proor. If m=1, this is Serre’s theorem [2, p. 47]. We shall prove 4.1,
4.2, and 4.3’ by induction on m, where 4.3’ is the statement 4.3 for F of
the form Oz(p) for some f € Z™. Assuming them proved for m and for
Z with the same notation, we let V' be another vector space and prove them
for Zx P(V). In the diagram, all the maps are the natural ones. If

Z x P(V) L PV)
/| I
Z—# Spec k

«€Zm™ and v € Z, then Ogzyp(x, ¥)=f*05()®g*Op(»). By the base
change formula, the natural map: Oz(«)®R%4g*O0p(»)—RY,0 zyp(x, ¥)
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is an isomorphism. Since our diagram is Cartesian and p is flat, the natural
map: p*R%,0p(v)—RY4g*0p(») is an isomorphism. Combining these
with the base change formula for p, we get a natural isomorphism:
H?(Z, 0z(2)) ®, H'(P, Op(v))>H?"(Z, RO z«p(a, v)). Bytheinduction
hypothesis the map:

G, ® S'(V)— H%Z, Oz(®)) ®, H(P, Op(»)) = HYZ X P, Ozxp(%, 7))

is an isomorphism, so 4.1 is proved. By induction, if («x, »)=0, we see that
H?*(Z, RYOz«p(x, v))=0 if p or ¢>0, so by the Leray spectral sequence,
H{(Z X P, Ozyp(x,»))=0 if i>0, and 4.2 is proved. Finally, for any 8
and u, @, H?(Z, Oz(f+a)) is finite as a G module and

Q;) He(P, Op(p + 7))
is finite as an (V) module, by the induction hypothesis; so their tensor
product @.v)z0 H?(Z, RO zxpr(B+a, u+v)) is finite as a G ®; S*(V)
module. Consequently the abutment @,,,)0 H(Z X P, Ozxp(B+a, n+7))
is also finitely generated, so 4.3’ is also proved.

To finish the proof, we recall that the Segre embedding [3, p. 93] shows
that the sheaf L=0,(1, - - -, 1) is very ample on Z. Therefore any coherent
Fon Z is a quotient of a finite direct sum E of copies of L”, for some ».
Moreover, 4.3 and 4.4 are proved for E, and also for all g sufficiently large,
since HY(Z, )=0 for ¢>>0. Now if 0—~K—E—F—0 is exact then we get
exact sequences HY(Z, E(x))—~H%(Z, F(«))~H"(Z, K(«)). Then the
theorem for E and a descending induction hypothesis on g will imply our
result for F. O

The proof of Theorem 3 is now quite easy. Let V; be the (finite dimen-
sional) k vector space I', . Since V, has no basepoints, there is a map
fi:X—P(V,) such that f,*Op(V)(l) =L, Then if f:X—Z is the induced
map, f*0z()=L7'®" - ‘@Ly»=L" Smce f is proper, the sheaves RY,F
are coherent on Z. Hence the G module @, H?(Z, RYF(x)) is finitely
generated, and so is the abutment @, o H"(X, F()). Since G is noetherian,
the G submodule M is also finitely generated. Finally, we note that
G, =T, so that by Proposition 2, M is polyfinite as a I' module. This
completes the proof. [J

5. COROLLARY. Let H be ample on a projective scheme X, let L be a
line bundle on X generated by its global sections, and let F be any coherent
O\ module. Then there exists an integer J such that HY(X, FQL'® H')=0
ifg>0,i20, and j=J.

PrOOF. Suppose H™ is very ample, so thatif I'=®; ; H'(S, L'QH™),
I' satisfies the hypothesis of Theorem 3. We apply the theorem with
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F®H™ in place of F, where 0=m<n, and conclude that each I' module
@, ; H(X, FRL'® H**™) is 1-finite. Hence there exists an integer I,
independent of j, such that the map:

HYX, L) ® HY(X, F® L'-' @ Hi"m) - H(X, F® L} ® Hi"tm)

is surjective if i= 7, j=0, and 0=m<n. Since H" is ample we can find J
such that H2(X, FQL'‘®H"*™)=0 if ¢>0, j=J, 0=m<n, and 0=i=<],
and it follows immediately by induction on i that HY(X, FRL'Q H))=0
if i20 and j=Zn(J+1).

REMARK. Zariski has proved [1, 6.2] that if H°(X, L) has only finitely
many base points, then H°(X, L) has no base points for i sufficiently
large, so we could weaken the hypothesis of the Corollary. His proof
makes essential use of Theorem 3, but since it is quite readable, I have
not included it here. I wish to thank the referee for filling a gap in my
proof of Corollary 5.
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