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ON THE HOMOMORPHISMS OF LOCALLY
COMPACT GROUPS1

D.   H.   LEE

Abstract. In this paper, we establish a conjugacy theorem of

homomorphisms of a locally compact connected semisimple group

into a locally compact group.

For locally compact groups G and H, let Hom(G, H) denote the space

of all homomorphisms of G into H under the compact open topology.

fx, f2e Hom(G, H) are said to be conjugate if there exists he H such

that f2(x)=hfx(x)h~1 for all xeG. For papers concerning various types

of conjugacy of homomorphisms, we refer to [3], [4], [5], [6], [7], [9],

and [10]. In [6] and [7], it is shown that two homomorphisms of com-

pact G are conjugate by an element of the identity component H0 of H if

and only if they are in the same connected component of the space

Hom(G, H). For noncompact G, however, the situation seems less

favorable as the character groups of locally compact abelian groups show.

Thus it seems natural to ask whether the similar conjugacy theorem holds

for groups in which there are no nontrivial connected normal abelian

subgroups. The main purpose of this paper is to establish the conjugacy

for the above mentioned groups.

In our approach to the problem, we adopt the point of view in the

theory of deformation of homomorphisms of Lie groups ([9], [10]). §1

contains basic materials for later use. In §2, we present the proof of the

rigidity theorem of Nijenhuis and Richardson [9, Theorem C], for the

sake of completeness. (Their proof does not seem to have appeared.) §3

is devoted for the proof of the main theorem (Theorem 2 in §3).

1. Basic definitions and conventions. (1.1) Let G be a locally compact

group and let p be a continuous representation of G in a finite-dimensional

real vector space V. A continuous map <p:G-*V is called a 1-cocycle of G

with values in V (relative to p) if, for x, y e G, <p(xy) = cp(x) + p(x)(<p(y)).
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The set of all 1-cocycles with values in V forms a vector space, which we

denote by ZX(G, V, p). A cocycle cp e ZX(G, V, p) is called a 1-coboundary,

if there exists v e F such that <p(x)=p(x)(v)—v. The set of all 1-cobound-

aries forms a subspace BX(G, V, p). Let

HX(G, V, p) = Z'(G, V, p)/Bx(G, V, P),

the 1-cohomology space of G with coefficients in V. For the detailed

discussion, see [8].

(1.2) Let G and H be locally compact groups. Then the set Hom(G, H)

becomes a topological space under the compact-open topology. To

describe neighborhoods of/, e Hom((J, H), let C be a compact subset of

G and let U be a 1-neighborhood in H. Then define

W(C, U;f0) = {/e Hom(G, H):f (x)f0(x)~x e U for all x e C}.

When C and f/run over all compact subsets of G and all 1-neighborhoods

in H, respectively, the sets W(C, U;f0) form a neighborhood basis of/,

in Hom(G, H).lfG and H are connected Lie groups, then we may embed

Hom(G, H) into Horn (9,Jf) by f-^df where df:9-+Jf is the differ-
ential off at 1, ^ and Jf being identified with the tangent linear spaces

of G and H, respectively, at I. For simply connected G, this embedding

is a homeomorphism.

(1.3) The following notation and convention are standard throughout

this paper. For any topological group H, H0, Z(H) and Aut(H) denote the

1-component, the center and the automorphism group of H, respectively.

Also, for x e H, Ix denotes the inner automorphism of H induced by x,

and, for X<= H, Int(Z) = {Ix;xe X} and ZH(X) is the centralizer of X in H.

When H is a Lie group, Adff denotes the adjoint representation of H in

its Lie algebra. A connected Lie group and its Lie algebra are denoted by

the same capital italic and capital English script letters, respectively. Thus,

for example, if G is a Lie group, then <& denotes the Lie algebra of G.

2. On rigidity of honiomorphisms of Lie groups. In this section we

prove the announced result of [9] on rigidity of homomorphisms of Lie

groups and extend it to locally compact groups.

(2.1) Let G be a connected Lie group with dim G=« and let o:G->-G

be the universal covering group of G. Then, for any Lie group H,

o*=Hom(o,l):Hom(G,H)-^-Hom(G,H) is an embedding, and fe

Hom(Cr, H) is in the image of a* if and only if /is trivial on Ker(a). Then

Ker(o-) is finitely generated (see, for example, Hochschild, Structure of

Lie groups, p. 189, Theorem 1.2). Let {5j, • • • , bm} be a generating set for

Ker(o-). Then/e Im(<7*) if and only if/(5,)=l, l</^w.

Now we choose a basis {Xx, • • • , Xn} for <& and let {xx, • ■ • , xn} be a

canonical system of coordinates for a fixed exponential map expG : @-*-G
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defined on a 1-neighborhood V of G. (See [1, p. 118].) Thus if a e V,

then a=exp(2£=i xk(a)Xk), where xk(a) denotes the kth coordinate.

Since Fgenerates G, for eachy", there exists bjU ■ • ■ , bjmlj) e F such that

m(j) mti) in \

(i)        í,=n k,=n ^paiix^biM.
u=i    »=i   \=i     i

Now we identify Hom(cT, H) with Hom(^, Jtf) under /-£- ¿f, where

df denotes the differential off at 1, <&, ¿P being identified with tangent

linear spaces of G and H, respectively, at 1.

Thus we have an embedding 6 ■ a* :Hom(G, /7)->-Hom(^, 3>if ). On the

other hand, every homomorphism <p e Hom(^, Jf") is uniquely deter-

mined by the tp(X,)= F¿ and these Y¡ can be chosen arbitrarily provided

they satisfy

(2) 2^kYk-[Yi,Yi] = 0,       1 = U = ",
t=i

where the cijk are structural constants of <$. Hence if we define

£:Hom(G, H)^-Jf ", J?" being the product of m copies of J^, by s(f)=

(df(Xx), ■ ■ • , df(Xn)), then we have, using/- expG=expH • df in (1).

Lemma 1. (Yu • ■ •, Yn)eJ>fn is in lm(e) if and only if the following

hold

(0 Î1 expff ß **(*,.,) r*) =0-       1 = J ^ f»,
„=i \=i I

(ii) 2cmYt-[Yi,Y]] = 0,       l£i,j£n.
i

Define ̂ ¡(Yx, • ■ • , Yn) and*¥Ui(Yx, ■■■ ,Yn)to be the left-hand side of
(i) and (ii), respectively. Then í>3, 1^/"_-/?j; *¥i%i, I331, j^n, are all

CK-maps of ¿if" into J^.

(2.2) Let p:G—*Aut(V) be a finite-dimensional real representation.

Since {Xx, • • • , Xn} is a basis of 'S, we have an embedding s :Z1(G, V, p)->

Vn defined by e'(f)=(df(Xx), • • • , df(Xv)). In the sequel we give a

convenient description of Im(s').

For this purpose, we take the semidirect product VxpG of the vector

group F by G relative to p. Then for feZ\G, V, p), f':G^VxpG
defined by f'(g)=(f(g), g), g e G, is a homomorphism. Hence we can

apply Lemma 1 to/' to get

Lemma 2.    (i\, ■ ■ ■ , vn) e V is in lm(s') if and only if

m(j)   n

(o 2 2<w = o,    i^j<i,
ii=l k=l
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where bJvk=xk(bjp)p(bUx • ■ ■ ¿3>p-iK (l£k£n, l^p^m(j), l£j£m)

(ii)    (2 c«ä) - dp(Xj)(vi) + dp(X%)(v,) = 0       (1 < /, ; ^ n),

where dp'.'S—»-End(F) is the differential of p.

(2.3) With this preparation, we can prove:

Theorem (see [9]). Let G be a connected Lie group and let f0 e

Hom(G, H), H any Lie group. If HX(G, ¿f, Ad °/0)=0, then lnt(H0) °/0

is a neighborhood off.

Proof. We first identify Hom(G, H) with a closed subset of Jf" under

s (2.1).

Then we can identify the tangent linear space of Jtn at/0 with that of

Jfn at (0, • • • , 0) by the right translation. On the other hand, we identify

the tangent linear space of 5tn at (0, • • • , 0) with 3?n.

Now we define % : H-+¿tn by %(h)=Ih °/0, « e H. Then it is easy to see,

using Lemma 2 in (2.2), that

Im(^) = £'(ß1(C,^,Ado/0)),

(ñ Ker(rf<D,)) O if] KeridT,.,)) = e'(Zx(G, 3?, Ad o/0))

where d<¡>¡, </¥,-_ ¿ denote the differentials of 03,Tt 3, respectively at/0 and

dx the differential of % at 1.

We thus apply Lemma 1 of Weil [10] to the space H and M'" and the

maps x and {Oy, Y¿,} to find an open neighborhood U of 1 in H such that

X(U) is open. But/, e %(£/)<= Int(/Y) •/„, which proves Theorem 1.

We generalize Theorem 1 to locally compact groups as follows:

Theorem 1'. If G is a connected locally compact group, then under the

same hypothesis of Theorem 1 the conclusion of Theorem 1 holds.

Proof. Since H is a Lie group, there exists an open 1-neighborhood V

which contains no nontrivial subgroup of H. By the hypothesis, the 1-

neighborhood /¡71(F) contains a compact normal subgroup K such that

G/K is a Lie group. Then for <p eZl(G, ¿t, Ad o/0), ^(^=0 and thus

if we define cp* :G\K-+3tf, by <p*(xK) = <p(x), xeG, then

<p*eZl(G¡K, Je, Ad of*),

where/* e Hom(G¡K, H) is induced by/„.

The map <p->-(p* induces an isomorphism

H\G, ¿V, Ad o/0) a& H\G/K, ¿T, Ad of*).
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Thus under our hypothesis ^(G/K, JP, Ad °/j,)=0, and by Theorem

1, there exists an open neighborhood U* off* such that U*^Int(H0) •/*.

We now consider the neighborhood W(K, F;/0). As f0(K)=l, it

follows thatf(K)=l for all/e W(K, V;f0). Hence, every/e W(K, V;f0)
induces/* e Hom(G/A", H), and/-*/* is continuous. Put

U={feW(K, V;f0)\f*eU*}.

Then U is an open neighborhood of/0 and is contained in lnt(H0) •/„,

proving that lnt(H0) •/„ is a neighborhood/,.

Corollary. Let G be a connected locally compact group and assume

that H1(G,V,p)=0 for all finite-dimensional representations p:G—*■

Aut(F). Then, for any Lie group H, the connected components in Hom(G, H)

are open and are of the form lnt(H0) ■ f,fe Hom(G, H).

Proof. Let ^ be the connected component of/0. Then, for fe'ë,

lnt(/f0)-/is a connected neighborhood off. Hence Int(H0) • f^tf and

{lnt(H0) -/|/e #} is a cover of %', from which it follows that ^ is open

in Hom(G, H). To prove the second assertion, for each/e <%, there exist/„,

n = l, 2, • • • , n, in Í? such that

Int(ffo) •/* n Int(/Y0) -/+1 ^ 0,       i = 0, 1, - ■ • , n - 1,

and

lnt(H0)-fn3f.

Now the assertion is clear.

3. Proof of the main theorem. In this section we establish the conjugacy

theorem (Theorem 2) for semisimple groups.

(3.1) Definition. A locally compact group G is called semisimple,

if its radical (that is, the maximal connected solvable normal subgroup,

see [5]) of G is trivial.

It is clear from the definition that the center of a semisimple group is

totally disconnected and that every closed normal subgroup of a semi-

simple group is again semisimple.

Lemma A. Let G be a locally compact semisimple group and let D be a

closed totally discrete normal subgroup of G. Then GjD is semisimple.

Proof. Let R' be the radical of GjD and let R be the inverse image

of R' under G-+G¡D. Then, since D is central in G, R is a closed solvable

normal subgroup of G. Hence R0 is contained in the radical of G which is

trivial. Thus R is totally disconnected. Hence R' is trivial, proving that

GjD is semisimple.
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Lemma B. A locally compact connected semisimple group is a protective

limit of semisimple Lie groups.

Proof. By the structure of a connected locally compact group, it

suffices to prove that if K is a compact normal subgroup of G, then

G\K is semisimple. By a theorem of Iwasawa [5, Theorem 2, p. 515],

G=K ■ ZG(K), which implies that G\K^ZG(K)\Z(K). ZG(K) is semisimple
as a closed normal subgroup of G. AlsoZ(.fv) is totally disconnected. Hence

ZG(K)\Z(K) is semisimple by Lemma A; hence G\K is semisimple.

(3.2) Lemma. Let G be a locally compact connected semisimple group.

Then the commutator subgroup G' of G is dense in G.

Proof. Let {Kx}XeA be a family of compact normal subgroups of G

such that GjKx are all Lie groups, and that G=proj lim GJKk (by Lemma

B of (3.1)). Since the assertion is true for connected Lie groups, we have

G=G' ■ Kx, Xe A, where G' is the closure of G'. Hence for any geG,

there exists gx e G' such that g—gxkx, for some kx e Kx. Let {rc^.}¿ be a

converging subnet of the net {kx}XsA. Then lim, gx. exists and is equal to g,

proving that g e G'. Hence G=G'.

(3.3) Lemma. Let K be a compact normal subgroup of a connected

semisimple locally compact group G and let n:G-*G\K be the natural map.

Then, for any connected subset XofG containing 1, Tr:ZG(X)-+ZG/K(Tr(X))

is onto.

Proof. We can write G=KZG(K). (See [5].) Then for z* e

Zg/k&ÍX)), we choose zeZG(K) so that 7r(z)=z*. Hence, for each

xeX,

[z, x] = zxz-xxrx eKD ZG(K) = Z(K).

But x—>-[z, x] is a continuous map from the connected space X into the

totally disconnected Z(K). Hence this map is constant and 1 e X implies

that [z, x] = l, proving that z eZG(X).

(3.4) Lemma. Let G be a locally compact connected semisimple group.

Then Hl(G ,V,p)=Ofor any finite-dimensional representation p : G->Aut( V).

Proof. Assume that G is a Lie group and let feZx(G, V, p). Then

/':G->-FxpG, the semidirect product of F by G relative to p, defined by

/'(g)=(/(á?)>£)> geG, is a homomorphism. Thus/'(G) is a semisimple

subgroup of Vxfi. Since any two maximal semisimple subgroups of a

Lie group are conjugate by an element from its radical, we find v e V
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such that (v, l)f'(G)(v, l)-1^ {0} x G. Hence, for g e G, v+f(g)=p(g)(v),

which implies that feB1(G, V, p), proving the assertion for Lie groups.

Now let G be locally compact and let U be a 1-neighborhood of Aut(F)

which contains no nontrivial subgroup and we choose a compact normal

subgroup K in /o_1(i7) such that G¡K is a Lie group. Then for every

feZ1(G, V, p), the restriction f\K e Hom(AT, V). Since K is also semi-

simple, f\K=0 by (3.2). Thus / induces /* eZA(G\K, V, p*), where
p* :G¡K-+Aut(F) is induced by p, and f-*f* induces an isomorphism

HKG, V, P)^H\G¡K, V, p*). Since G/Kis a Lie group, H\GIK, V, P*)=
0, which proves that H*(G, V, p)=0.

(3.5) Now we are ready to prove the following main theorem of this

section.

Theorem 2. Let G be a locally compact connected semisimple group

and H any locally compact group. Then the connected components in

Hom(G, H) are exactly of the form lnt(H0) -f,fe Hom(G, H).

Proof. Since G is connected, it is easy to see that Hom(G, H)^

Hom(G, H0). Hence we may assume that H is connected. Let # be any

connected component in Hom(G, H) and fix/, e if.

Let R denote the radical of H with the descending sequence of the de-

rived groups: j?=*«»=>Jl<i>=- • -=>£<«>o£<*+i>={i}.

Our proof is based on the induction on n, the length of solvability of R.

(A) The assertion holds for «=0. Note that H in this case is semisimple.

Fix a compact normal subgroup K of H such that H\K is a Lie group,

and let {Kx}XeA be a family of compact normal subgroups with each KX^K

such that H\KX is a Lie group and that H is a projective limit of H\KX.

Thus by (3.4) and the corollary in (2.3), the assertion in the stated

theorem holds for Hom(G, H\KX), X e A.

The maps Hom(G, H)^-Uom(G, H\KX), induced by H-*H/KX, are all

continuous. Hence if/e <€, then there exists hxe H such that, for xeG,

Kf(x)h-X1=f0(x)   modKx.

Similarly we find h0e H such that, for xeG, h0f(x)h0~1=f0(x) mod K.

Since Kx<=-K, h0f(x)h¿L=hxf(x)h~lx mod K, which implies that -n-fä1 ■ h0)

is in the centralizer of 7r(/(G)) in GjK, where v : G-+GJK is the natural

map.

By (3.4), there exists ae H such that a commutes with every element of

/(G) and that ir(a)=7r(AX1Ä0), XeA.

Thus hxa e h0K, XeA, and we may hence assume that the hx are all in

h0K (by replacing hx by hxa if necessary). Since h0K is compact, the net
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{hx}XeA has a converging subnet {hx.}¡ with lim¿hx=h. Then we have

4 °f(x)=f>(x), xeG, which proves (A).
(B) Assume now that the theorem holds for H with the length of

solvability of its radical less than n, and consider the sequence in the

beginning of our proof.

Applying the induction hypothesis to the group HjRin), we find he H

such that, for x e G, hfix)h-x=f0ix) mod Ä<">. Let x(x)=hf (x)h-xf0(x)~l,

x eG. Then a is clearly a continuous map of G into Rin). Let K be the

maximal compact subgroup of the abelian group R{n). Then K, being a

characteristic subgroup of Rln), is normal (hence central) in H and

R{n)jK is a vector group. Let p(x), x e G, be the automorphism of R{n),

defined by y-*fo(x)yf0(x)~1, y e R(n). Then p leaves K pointwise fixed,

hence p induces a representation p* of G in the vector space R{n)/K.

Now it is a trivial matter to verify that the composite map ¡x^G-5»-

RWl+RW/K is in ZX(G, R^/K, /»*). But HX(G, J?«">/A", p*)=0 by (3.4).
Hence there exists a e Rln) such that

oi*(x) = 7r(a)-x P*(x)(n(a)),       xeG.

From the definition of a.*(x), it follows that, for xeG, hf(x)h~x =

a~xf0(x)a mod K, and thus we have ß(x)=ahf(x)(ah)"xf0(x)~x e K. An

easy calculation using the centrality of K in H shows that ß : G^-K is a

continuous homomorphism. As K is abelian, it follows that the first

derived group G'<=Ker ß, Since G' is dense in G by (3.2), we have that

ß(G)= 1, which means that ahf(x)(ah)~x=f0(x) for all xeG, proving that/

is conjugate to/0.

Remark.   Theorem 2 is a generalization of Theorem (4.3) in [3, p. 338].
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