
PROCEEDINGS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 37, Number 1, January 1973

THE COMPACTNESS OF THE SET OF ARC CLUSTER
SETS OF AN ARBITRARY FUNCTION

JOHN T. GRESSER

Abstract. It is known that if /"is a continuous complex-valued

function defined in the open unit disk D, then the set (£,(£) (£ e 3D)

of all arc cluster sets of /at £ is compact in a natural topology for all

but at most a countable number of points £ £ 3D. We show that

if/is an arbitrary complex-valued function defined on an arbitrary

subset Z of the plane, then (£,(/>) is compact for all but at most a

countable number of points peZKjdZ.

1. Introduction. Let § be the collection of all closed, nonempty

subsets of the Riemann sphere W. We define what is known as the Haus-

dorff metric on § by

M(A,B) = max I sup inf d(a, b), supinf d(a, b)\       (A, B e §),
XaeA  beB beB aeA I

where d(a, b) is the spherical distance between a and b. With this metric

§ is a compact metric space.

Now let P denote the complex plane, and \etp eP. We say that a is an

arc at p if aÇP—{p} and is the image of a continuous function z=z(t)

(0^?<1) such that z(t)—>-p as t-*l. We call a a simple arc at p if <x is in

addition homeomorphic to [0, 1). If Z is any nonempty subset of P, we let

Z denote the closure of Z and define, for/» eZ,

¿&V(Z) = {a:a is a simple arc at p with a Ç Z).

We assume that the reader is familiar with the elementary notions of

cluster set theory (see [3] or [4]). If/is an arbitrary function whose domain

is Z and whose range is a subset of W, if p eZ and a 6 ¿/P(Z), then

C(f,p, a) denotes the arc cluster set of/ at p along a. We let <if(p)=

{C(f,p, a):a e ¿tf v(Zy}. Then § topologizes the set &f(p) with what has

been called the M-topology.

This paper is written in response to the following two theorems which

appear in [2, Theorems 1 and 2, pp. 211, 213].

Received by the editors November 12, 1971 and, in revised form, April 17, 1972.

A MS 1970 subject classifications. Primary 30A72; Secondary 30A90.

Key words and phrases. Arc cluster set, set of arc cluster sets of an arbitrary function,

selector of arcs, missing arc cluster set.
© American Mathematical Society 1973

195



196 J.  T.  GRESSER [January

Theorem A. Let f be a continuous function in D, and let £ e K. If' £ is

not an ambiguous point off, then (£/(£) is a compact set in the M-topology.

Theorem B. There is a function fdefined in D such that £0= 1 is not an

ambiguous point off, and &f(l) is not a compact set in the M-topology.

Since an arbitrary function in D can have at most a countable number

of ambiguous points £ e K [1, Theorem 2, p. 380], it follows from Theorem

A that if/is a continuous function in D, then £/(£) is a compact set in the

M-topology for all but at most a countable number of points £ e K. This

raises the question as to whether or not (1/(0 is a compact set in the M-

topology for all but at most a countable number of points £ e K when/is

an arbitrary complex valued function defined in D. But since the boundary

of a domain plays no preferential role insofar as an arbitrary function is

concerned, it is natural to investigate the question of compactness of

£f(p) for points p interior to D as well. Although the result in this paper

deals with an arbitrary domain, our most striking conclusion is that iff is

an arbitrary function defined in the plane P, then C/(/>) is a compact set

in the M-topology for all but at most a countable number of points/) e P.

Our result, in addition, answers the above question concerning the unit

circle K in the affirmative.

2. Geometry of arcs. Our proof requires several rather specialized

definitions. If a is an arc at p e P, we say that ß is a terminal subarc of a

if ß—z([t0, 1)) for some r0 and some representative z=z(t) of a. We call y

a curvilinear segment if y is the image of a continuous function z—z(t)

(O—^—T). A sequence (yf) of curvilinear segments is said to converge to

p e P provided that p £ y, for every j, and that for every e>0 all but a

finite number of the sets y¡ are contained in the open disk of radius s

centered at p.

Let Es P. We say that T is a selector of arcs on E if for every p e E,

T(p) is a nonempty collection of simple arcs at p, and if T(p)=0 for

every p £ E. If Q^P and a, ß are arcs at p, we say that Q joins a and ß if

there is a sequence (y¡) of curvilinear segments such that yf£ Q for every/,

(yf) converges top, and y3-Oa^0 ^yaC\ß for every/ If T is a selector of

arcs on E, Q^P, and p e E, we say that Qjoins T(p) if g joins aand ß for

every a, ß e T(p). If T is a selector of arcs on E, we define the sets

Sri» = U «   (a e T(p)),       Zr = (J SI\»   (p e E).
a p

Lemma 1. Let E^P and let V be a selector of arcs on E such that the

cardinality ofY(p) is six for every p e E. Suppose there is an £>0 such that

dia(a)_^ for every a e Y(p), and every p e E. Then there is a set FS E,

with E—F at most countable, such that for every p e F there are distinct
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arcs a, ß e T(p), and there is a curvilinear segment y£ 2T satisfyingp $ y,

dia(y)^e, and y C\v.j£ & jiy C\ß.

Proof. If the lemma is false, then there is an uncountable subset G of

£ such that for every p e G and every pair a, ß of distinct arcs in V(p) no

such curvilinear segment exists. By covering G with a countable collection

of open disks of diameters e, it follows that for at least one such disk, say

D0, the set G0=GnD0 is uncountable. For each peG0, and each oce

T(p), a. intersects the boundary C0 of D0, so that there is a terminal sub-

arc of a which is contained in D0 except for one end point which lies on C0.

Let oLj(p) (j= 1, 2, • • •, 6) denote these terminal subarcs of arcs in T(p) for

peG0.

Now let {A,) be a countable collection of open circular subarcs of C0

which forms a basis for the usual topology on C0. For each p e G0, by

choosing the smallest indices possible, \etAi(p)(i= 1,2, • • • , 6) be mutually

disjoint members of {A¡} such that <*,•(/>) intersects At(p). Since the col-

lection of all 6-tuples having coordinates in {A¡} is countable, it follows

that we can find distinct points p, q e G0 such that A{(p)=A((q) for each

/=1, 2, • • • , 6. We assert that this is impossible.

A trivial consequence of a point r being in G is that no two arcs in

Tip) intersect. Consequently the set iD0—{p})—{J*=1a.Jip) contains six

components, say D¡ (y'= 1, 2, • • • , 6), each of which is bounded by two of

the arcs a¿.(/>) (fc=l, 2, • • • , 6), {/?}, and a circular subarc of C0.

There are two cases to consider. If q lies in one of the domains, say DJo,

then at least four of the arcs ockiq) must cross the boundary of D} . Since

these arcs are mutually disjoint, only one can cross the boundary of D¡ at

p. Therefore at least two of the arcs xk(q) must cross one of the arcs a3(/>),

and this contradicts q e G. In the other case, q lies on one of the arcs atp,

say «.j (p). We let D' he the union of <x¡(p) with its two adjacent domains.

Now at least two of the arcs <xk(q) must cross the boundary of D' at points

distinct from p. No two of the arcs o.k(q) can cross one of the arcs «.¡(p)

since q e G. Hence two of the arcs ock(q) cross two of the arcs a,(/>). But

since q e ST this implies that q, together with two of the arcs <xk(q), form a

curvilinear segment which contradicts p e G, and this completes the proof.

Remark. It can be shown that Lemma 1 is false if the cardinality

condition is replaced by a cardinality of four. On the other hand, it can

be shown that Lemma 1 remains true if the cardinality condition is re-

placed by a cardinality of five. The merits of this stronger result, however,

do not justify the added difficulties encountered in the proof.

Lemma 2. Let £<=P and let T be a selector of arcs on E such that the

cardinality of Y(p) is six for every p e E. Then there is a set £s£, with
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E—Fat most countable, such that for every p e F there are distinct arcs a

and ß in Y(p) such that ¿ZY joins a and ß.

Proof.   For eachy'=l, 2, 3, • • • , let

Ej = {p e £:dia(a) > 1// for every a e Y(p)},

so that E is the union of the sets Ef. According to Lemma 1, for each

y=l, 2, 3, • • • , and each k^j there is a set £,(&)£ £;., with Ej—F^k) at

most countable, and for every p e F,(k) there is a curvilinear segment

ySSr, and distinct arcs a, ß e Y(p) such that pay, dia(y)^ljk, and

aOy?í0#jSnv. We set
00 CO

F = U  D F,(/c),
>=1 k=j

so that E—Fis at most countable. Since T(p) is a finite set, it now follows

that ST joins at least two distinct arcs in T(p) for every p e F.

Lemma 3. Let ££ P and let Y be a selector of arcs on E. Then there is a

set Fs£, with E—F at most countable, and there are selectors of arcs Y¡

(j= 1, 2, ■ • • , 5) on E such that Y(p)= \J*fml r,(/>) for every p e E, and Sr
joins Tj(p)for every p e F and j = 1, 2, • • • , 5.

Proof. Let p e E, and let a, ß e Y(p). Define a~/? if and only if

ST joins a and ß. This defines an equivalence relation on Y(p). Let F be

the set of all points p e E for which Y(p) contains less than six equivalence

classes. For each p e E—F let a,(/?) (j— 1, 2, • • • , 6) be members of six

different equivalence classes of Y(p), and define

T0(p) - {a,(/0 :; = 1, 2, • • •, 6}       (p e E - F).

Then ro is a selector of arcs on E—F such that 2T0 joins no two arcs in

Y0(p) for every p e E—F. It follows from Lemma 2 that £—F is at most

countable. For each p e E—F define Y5(p)=Y(p) (j=l, 2, • • • , 5). For

each p e F let T//?) (jr= 1, 2, • • • , 5) denote the various equivalence

classes in Y(p), where duplication is allowed in the case that Y(p) has less

than five equivalence classes. It follows that ST joins Y¿(p) for every

p e F and every7= 1, 2, • • • , 5.

3. The main result. Let Z be an arbitrary subset of P, and let/be an

arbitrary complex valued function defined on Z. We call a closed subset C

of the Riemann sphere W a missing arc cluster set of f at p eZ if C e

^,,(p)— (£/(/>), where (£/(/>) denotes the closure of Q.f(p) in §. If /(çZwe

letf(A) denote the closure off (A) in W. If C is a closed, nonempty subset

of W, and £>0, C(e) will denote the set of all points whose spherical

distance from C does not exceed £. It follows that if P, Qe%>, then

M(P, Q)^e if and only if PzQ(e) and Q^P(c). Several immediate
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properties of M follow from this observation, and we will use them freely

and without reference in the next proof.

Theorem 1. Let f be an arbitrary complex valued function defined on an

arbitrary subset Z of the plane. Then (if(p) is a compact set in the M-

topology for all but at most a countable number of points p eZ.

Proof. Let £ be the set of all points in Z at which £f(p) is not compact,

and for each/? e £, let C„ be a missing arc cluster set off at p. Let (e,-) be a

decreasing sequence of positive numbers which converges to zero. Then

for each /'= 1, 2, 3, • • • , and each p e E, let a3(/?) e si'V(Z) such that

(1) M(C(f,p,^(p)),CP) ^8,14,

(2) M(f(ocj(p)), e,) < cv/2.

For each k=\, 2, 3, • • • let ($>(k, 1), (5(k, 2), • • • , ®(ac, nk) be a covering

of 9) by compact neighborhoods such that

(3) dia(<5(fc, «)) = ek¡2       (n < nk).

Then define

(4) L(k,n) = {peE:Cpe<5(k,n)}       (k = 1, 2, 3, ■ • • ; n = nk).

We let T[k, n] be the selector of arcs on L(k, n) defined by

(5) T[k,n](p) = {0ij(p):j = k,k+l,k + 2,---}       (peL(k,n)).

It follows from (2)-(5) and the properties of M that

(6) /(Sr [k, n]) £ Cv(ek)       (p e L(k, n),n< nk).

According to Lemma 3, for each k—l, 2, 3, • • • , and ni%nk, there is a set

F(k, w)ç L(k, n), with L(k, n)—F(k, n) at most countable, and selectors of

arcs Tj[k, n] (j=\, 2, • • -, 5) on L(k, n) such that

(7) r[fc, n](p) = U r,[fc, n](p)        (p e L(k, n)),
3=1

and

(8) Sr[/c, r]   joins   Ts[k, n](p)       (p e F(k, n), 7 = 1,2,..., 5).

Define the set Fk= \Jl"=1 F(k, n), and note that each of the sets Fk contains

all but at most a countable number of points in £ since, for each k,

£=U"=i ¿(fc> «)• Therefore the set F=f)^=1 Ek contains all but at most a

countable number of points in £.

We will show that £ is countable by showing that £ is empty. Suppose to

the contrary that/; e F. We assert that there is an a e s/„(Z) whose corre-

sponding arc cluster set is C„.
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Since p e F it follows that for every k= 1, 2, 3, • • • , there is an mk^nk

such that/? e F(k, mk). Using (8) this means that, for every k= 1, 2, 3, • • • ,

IT[k, mk] joins Tt[k, mk](p) (j=l, 2, ■ ■ ■ , 5). It follows from (5) and (7)

that if y is an integer for which Y,[k, mk](p) is an infinite set, then there is

an integer i such that

I\[/c, mk](p) n Yt[k + 1, mk+1](p)

is an infinite set. Using this observation, we construct inductively sets

Ak=YJk[k, mk](p) (k=l, 2, 3, • • •) in such a way that Akr\Ah+1 is an

infinite set for each k. We then define inductively a sequence (a.k) of arcs

cLk e Akr\Ak+1 in such a way that (a.k) is a subsequence of (<xk(p)). From

our construction it follows that ~LY[k,mk] joins a^ and a.k (k=2,3,

4, • ■ •). For each k=2, 3, 4, • • • , let (y¡(k)) be a sequence of curvilinear

segments such that

(9) Yj(k) ç Sr[fc, mk]       (j = 1, 2, 3, • • •),

(10) (y¿(fc)>   converges to p       (fe fixed),

(11) y Ik) n afc_, ?* 0 s* y5(7c) n at       (j = 1, 2, 3, • ■ •).

It follows from (6) and (9) that

(12) /(y/fc)) £ <:„(£,)       (j, k = 1, 2, 3, • • ■).

Then using (1), (10), (11), (12), and the definition of an arc cluster set, a

simple arc a at p can be constructed which passes through the sets <xk and

the sets y¡(k), and satisfies C(f,p, ol)=Cp. This contradicts the definition

of C„ and completes the proof.
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