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A TAUBERIAN GROUP ALGEBRA

PETER R.  MUELLER-ROEMER

Abstract.   Let G be the group of real matrices

(x,y)~i J        (x,yeR).

Every proper closed two-sided ideal of IA(G) is contained in a

maximal modular two-sided ideal. The strong radical of L¡(G) is the

set of all fe Ll(G) with ¡f(x, y) dy = 0 for almost all x e R. The
strong structure spaces of V(G) and V-(R) are homeomorphic.

Call a Banach algebra A tauberian if every proper closed two-sided ideal

of A is contained in a maximal modular two-sided ideal. For completely

regular Banach algebras this definition coincides with Rickart's (cf. [2,

2.7.25]). The F^group algebras of compact and of locally compact abelian

groups are known to be tauberian. Probably, it is already known that the

direct product of a compact and an abelian group has a tauberian group

algebra. A quite different example follows.

Let G be the group of real matrices (x,y) = C£ \) (x,y e R) with its

natural topology, and let H^R he the normal subgroup of elements (0, y).

The law of composition in G is

(x, y)(u, v) = (x + u, euy + v)

and thus d(u, v)—du dv is the (left) Haar measure on G. Moreover,

(«, t;)"1 = (-ii, -e-"i>)

and

(ii, v)-\x, y)(u, v) - (x, (1 - e> + euy).

The convolution product of/ and g in L1(G) is given by

/* g(x, y) = \f(x + u, euy + v)g(-u, -e~uv) du dv,
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and the canonical projection

TH:L\G)-*L\GIH)2éL\R)

by (THf)(x)=:$f(x,y) dy. Its kernel will be denoted by K=T¿x(0). Let;0

be the kernel of the trivial character of LX(R), i.e. j0={q e Lx(R)\q(0)=

f qiy) dy=0}. Now Kcan easily be identified with LxiR,j0), which in turn

contains Lx(R)xj0 as a total subset. In other words, the elements of K can

be approximated by finite sums of elements p®q—p®q(x, y)=p(x)q(y)—

with p and q from LX(R) and q(0)—jq(y) dy=0.

The element (—log z, 0) for z>0 defines the inner automorphism iz of G,

iz(x,y) = (x,z-xy),

and iz induces an isometric automorphism Mz of LX(G) given by

(MJ)(x, y) = z-x -f(x, z~xy)   fovfe LX(G).

Similarly,

(Mzf)(y) = z-xfiz~xy)

defines an isometric automorphism of L1iR). By [1, Chapter 1, §2.2, p. 6],

(1) lim(M2/)*g=/(0)g   for/, g e L\R).
z-0

Remark 1. This property is essential to the main proof and seems to

have no analogue in general locally compact groups.

(2) lim (Af J-) * g = 0   for f e K, ge L\G).

Proof. It suffices to prove (2) for f=p®q with p, q e LxiR), qi0)=0

and g=h®k with h, k continuous functions with compact support, since

these functions are total in K and V-(G) respectively. Now Mzf=p®Mzq

and

iMJ* g)(x, y) = [pix + u)iMzq)ie"y + v)hi-u)ki-e~uv) du dv

= ip(x + u)h(-u) [eu(Mzq)(eu(y + v))k(-v) dv du

= jp(x + u)h(-u)((Mc-«zq) * k)(y) du.

Consequently

\MJ* g\x < f \p(x + n)| |ft(-«)l \iMe-uzq) * k\x dx du.

The support of /; is contained in an interval  [—a, +a] and, by (1),

\Mtq * k\i<s for t^b=bie). Now e~uz^b for \u\^a and z^e~ab; hence
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we obtain

\MJ* g\x ^ \p\x ¡+"\h(-u)\ \(Me-»zq) * k\x du
J—a

< £ \p\x ■ \h\x   for z = e~a6.

Remark 2. Let f=p®q with p, q in L1(R), ^_0 and ^(0)=1, and let

g=h®k be as above. A similar computation leads to

\MJ* g-g\x< \p\x \h\x sup \(Me-»zq) *k-k\x + \p*h-h\x- \k\x.
\n\¿a

Again, the supremum can be made arbitrarily small, and if p is chosen

conveniently from an approximate identity {/?t}¿ the second term becomes

small. Also \Mzf\x=\pi\x ' ^(0)=1. Thus a density argument for the g's

shows that {pi®Mzq}U-z) is an approximate identity for LX(G) if (/', z)_

(j, z') is defined to mean igtjand z—V.

Theorem. If J is a proper closed two-sided ideal in L1(G), then so is

J+K.

Proof. By §4.6(ii), Chapter 8 in [1] J+K is a closed, two-sided ideal.

We will show that if J+K=L1(G) then J=Ll(G). Let feLl(G) and let

{pi®Mzq}u z) be the approximate identity described in Remark 2. Set

qt=Pi®q and qiiZ=pi®Mzq=Mzqi. Since J+K=L1(G), qt**q't+tfi with
q\eJ, q'i e K. Since J and K are invariant under left translations Lg,

(LJ)(g')=f(g-y) and right translations Rg, (RJ)(g')=Hg)f(g'g),they
are invariant under Mz=LgRg, with g=( — logz, 0), and it follows that

qi.z=q'i.z+q'i,z with q'i.z=Mzq'i eJ, q'iz=Mzq'íeK- ^OT £>° there exists

(i0, z0) such that \f— q¿,z */|i<£ provided (/', z)_(/0, z0), i.e. provided

i"_^'0 and z^z0. Consequently,

\f-q¡.z*fUúe + \q¡'.z*f\i-

Since q'i e K, (2) implies

lim \q'U *f\x = lim \M^ *f\t - 0,
z->0 z—0

i.e.

k".. */li SS «    for z = ¿(i, e) = z0.
Hence

|/ - ,;., */|, < 2e   for i = i„ z = ó(/, s).

Since e was arbitrary, this impIies/eF

Corollary 1. F/ze maximal modular two-sided ideals of L\(G) contain

K.

Proof. If J is a maximal modular two-sided ideal in LMG), J+K is a

proper modular two-sided ideal containing F By maximality/=7+F=>F.
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Remark 3. Not all closed two-sided ideals of L1iG) contain K: Let

j+ [y_] be the ideal in LX(R) which consists of the functions g whose

Fourier transforms g vanish for all positive [negative] X, i.e.

¿(X) = jeiX"g(y) dy = 0       (X > 0 [X < 0]).

By continuity g(0)=0; hence j±cf0- Let J+ be the set of feLx(G) with

(y->f(x, y)) ef+ for almost all x. Let /_ be similarly defined. By the

uniqueness of the Fourier transform y'+n/_={0}, hence also/+OJ_={0}.

./+©./_ <= Kand neither J+ norJ_ contains K. That/+ andJ_ are closed two-

sided ideals can be seen as follows : The operator Ax defined by (Akf)(x,y) =

e"yf(x,y) is an isometry of LX(G) and thus maps closed subspaces into

closed subspaces. In particular Ki=AJ1K and J+=f)x>o Kx are closed. It

is easy to check that Kx is invariant under left-translations and that the

right-translation P(o,¡,) maps Kx onto KXe-a. Hence, J+ is a two-sided ideal.

Corollary 2. TH induces a homeomorphism of the strong structure

spaces of LX(G) and LX(R) and K, the kernel of TH, is the strong radical of
LxiG).

Proof. By §4.4, Chapter 3 of [1] the isomorphism Lx(G¡H)g^Lx(G)¡K

is algebraic and isometric. By Theorem 2.6.6 of [2] and Corollary 1 the

strong structure spaces of LX(R)^LX(GIH) and LX(G) are homeomorphic.

Since LX(R) is strongly semisimple its strong radical is {0}, and the inverse

image K of {0} under TH is the strong radical of LX(G).

Corollary 3.    LX(G) is a completely regular tauberian Banach algebra.

Proof. By the theorem, TH(J)^(J+K)IK is a proper closed two-sided

ideal iff/ is one. Since every such ideal THiJ) is contained in a maximal

modular two-sided ideal M of LX(R), J is contained in 7j?(M) which is

itself modular. Thus LxiG) is tauberian (cf. 2.7.25 of [2]). Since LX(R) is

completely regular 2.7.4 of [2] implies that L1iG) is completely regular.
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