REGULAR MATRICES AND *P***-SETS IN** $\beta N \setminus N$

R. E. ATALLA

ABSTRACT. A P-set is a closed set which is interior to any zero set (closed G_{δ}) which contains it. Henriksen and Isbell showed that the 'support set' in $\beta N \setminus N$ of a nonnegative regular matrix is a P-set. We show that each such support set contains a family of 2^c pairwise disjoint perfect nowhere dense P-sets, so that not every P-set comes from a matrix. Moreover, each of the P-sets produced is the support of a Borel probability measure on $\beta N \setminus N$.

1. **Introduction.** Let $T=(t_{mn})$ be a nonnegative regular matrix, F_T the filter of subsets A of the positive integers N such that $T-\lim_{A} \chi_A = 1$, and K_T the corresponding closed set in $\beta N \setminus N$. Henriksen and Isbell [H-I] showed that K_T is perfect and a 'P-set', i.e., is a closed set which is interior to any closed G_δ set which contains it. It is natural to ask whether every such subset of $\beta N \setminus N$ is related to a nonnegative matrix as above. This question is resolved by

THEOREM. Assume the continuum hypothesis. Then there exists a family of 2° pairwise disjoint perfect nowhere dense P-sets contained in K_T . Moreover each of these P-sets is the support set of a Borel probability measure on $\beta N \backslash N$.

According to [H-I] the set K_T has nonvoid intersection with each member of an uncountable family of pairwise disjoint clopen subsets of $\beta N \backslash N$, so it cannot be the support set of a Borel measure. Hence

COROLLARY. Under the continuum hypothesis there exist perfect nowhere dense P-sets in $\beta N \setminus N$ which do not correspond to any regular matrix.

In the fourth section we prove a more general version of the main theorem. Namely, let $T=(t_{mn})$ satisfy

- (1) $\lim_{m\to\infty} t_{mn} = 0$ for all n,
- (2) $\sup_{m} \sum_{n} |t_{mn}| < \infty$,
- (3) $\limsup (m \to \infty) \sum_{n} |t_{mn}| > 0$.

Presented in part to the Society, October 31, 1970 under the title *P-sets in* $\beta N-N$ and regular matrices; received by the editors July 12, 1971 and, in revised form, September 12, 1971.

AMS (MOS) subject classifications (1970). Primary 40C05; Secondary 54D35, 54G05. Key words and phrases. Regular matrix, support set of a matrix, P-point, P-set, P-set,

Then the support set K_T of T can again be defined (although not in so simple a fashion as above). As far as the author knows, unless T is nonnegative it is not known whether K_T is a P-set. Nevertheless we show that K_T contains a family of 2^c pairwise disjoint perfect nowhere dense P-sets, each the support of a Borel probability measure.

2. Preliminaries.

2.1. NOTATION. If $A \subset N$, let A' be its closure in βN and $A^* = A' \cap \beta N \setminus N$. Then $N^* = \beta N \setminus N$. Note that $K_T = \bigcap \{A^* : A \in F_T\}$. We write cl R for the closure of any subset R of N^* . $C^*(N)$ is the space of bounded real functions on N. If $f \in C^*(N)$, f' is its extension to βN , and f^* the restriction of f' to N^* .

 $T=(t_{mn})$ will always (except in §4) be a nonnegative regular matrix. If c_0 is the space of real functions on N which vanish at infinity, then $T(c_0) \subset c_0$, so T induces an operator T^* on $C(N^*)$ by the formula $T^*f^* = (Tf)^*$ $(f \in C^*(N))$. By regularity of T, $T^*1 = 1$. If $p \in N^*$, let m_p be the Borel probability measure representing the functional $f \to T^*f(p)$ $(f \in C(N^*))$, K_p the support set of m_p , and $K = \text{cl} \bigcup \{K_p : p \in N^*\}$. If T is nonnegative, then it is easy to see that $K = K_T$, where K_T is as in the Introduction (see [A]).

- 2.2. DEFINITION. Let $T=(t_{mn})$. $S=(s_{mn})$ is a submatrix of T if there is a sequence m(k) of integers such that the kth row of S is the m(k)th row of T.
- 2.3. PROPOSITION. Let W be a clopen subset of N^* . Then $cl \cup \{K_p : p \in W\}$ is the support set of a submatrix of T, and hence is a P-set.

PROOF. Let $A \subseteq N$ with $A^* = W$. Let $\varphi: N \to A$ be an order preserving bijection, and $\varphi^*: N^* \to W$ be its extension to N^* (again a bijection). Let S be the matrix such that $Sf(n) = f(\varphi n)$ ($f \in C^*(N)$), and $R = S \circ T$. Then $Rf(n) = Tf(\varphi n)$, so R is a submatrix of T. On $C(N^*)$, $R^* = S^* \circ T^*$, and if $p \in N^*$, $f \in C(N^*)$,

$$R^*f(p) = T^*f(\varphi^*p) = \int_{K_q} f \, dm_q,$$

where $q = \varphi^* p$. Hence the support of the matrix R is

$$K_R = \operatorname{cl} \bigcup \{K_q : q = \varphi^* p, p \in N^*\}.$$

But since $\varphi^*: N^* \to W$ is a bijection, $K_R = \text{cl } \bigcup \{K_p: p \in W\}$, and by the Henriksen-Isbell theorem K_R is a P-set.

2.4. PROPOSITION. If J is a P-set, then $L=cl \cup \{K_n: p \in J\}$ is a P-set.

PROOF. Let $f \in C(N^*)$ be nonnegative with $L \subseteq f^{-1}(0)$. We must show there is an open V with $L \subseteq V \subseteq f^{-1}(0)$. Now if $p \in J$, Tf(p) = 0 (since f

vanishes on K_p), so $J \subset (Tf)^{-1}(0)$. But J is a P-set, so there exists open U with $J \subset U \subset (Tf)^{-1}(0)$. By compactness of J there exists clopen W with $J \subset W \subset U$. Now $p \in W$ implies Tf(p) = 0, i.e., the integral of f with respect to the measure m_p is 0. Since f is nonnegative, $K_p \subset f^{-1}(0)$. Hence

$$L \subset \operatorname{cl} \bigcup \{K_n : p \in W\} \subset f^{-1}(0).$$

Since W is clopen, 2.3 implies that the set in the middle is a P-set, so there exists open V with $L \subseteq V \subseteq f^{-1}(0)$.

- 2.5. COROLLARY. If p is a P-point, then K_p is a P-set.
- 3. **Proof of the theorem.** We assume $T=(t_{mn})$ satisfies

$$\lim(m\to\infty)\sup\{t_{mn}:n\in N\}=0.$$

(If this condition is not satisfied, then K_T contains a clopen set W [Ra], and we can construct a matrix which does satisfy the condition, whose support set is contained in W.) By Lemma 4.1.2. of [P] we may assume without loss of generality that T is truncated, i.e., there exist sequences $\{r(m)\}$ and $\{s(m)\}$, both increasing monotonically to infinity, with $t_{mn}=0$ whenever n < r(m) or n > s(m). By regularity of T we may also assume each row sum is 1. Taking T to have this form, it follows that there exist $m(1) < m(2) < \cdots$ such that the corresponding rows have disjoint supports, i.e., if $i \ne j$, then $t_{m(i)k} > 0$ implies $t_{m(j)k} = 0$. Let S be the matrix having as its kth row the m(k)th row of T. Then $K_S \subseteq K_T$, for if $A \subseteq N$ and T— $\lim_{N \to \infty} \chi_A = 1$, then S— $\lim_{N \to \infty} \chi_A = 1$.

Now S is a nonnegative regular matrix with row sums=1, and whose rows have disjoint supports. If $p \in N^*$, let L_p be the support of the measure representing the functional $f \rightarrow (S^*f)(p)$ $(f \in C(N^*))$. Assuming the continuum hypothesis, there are 2^c P-points in N^* [R], and if p is a P-point, then 2.5 implies L_p is a P-set. Each L_p is nowhere dense, since the support of a Borel measure in N^* is nowhere dense. (Every clopen subset of N^* contains a family of c pairwise disjoint clopen sets.) Lemma 3.1 below will imply that if p and q are distinct, then L_p and L_q are disjoint. To show that if p is a P-point, L_p is perfect, note that L_p is a P-set. It is easy to see that an isolated point in a P-set must be a P-point. We show in Lemma 3.2 that K_S contains no P-points.

3.1. Lemma. Let $S=(s_{mn})$ be a nonnegative regular matrix such that each row sum is 1, and distinct rows have disjoint supports. Let L_p $(p \in N^*)$ be as above. If $p \neq q$, then L_p and L_q are disjoint.

PROOF. First we show that S maps the set $\{f \in C^*(N): 0 \le f \le 1\}$ on itself, and hence S^* maps $\{f \in C(N^*): 0 \le f \le 1\}$ on itself. If $0 \le f \le 1$, define $g \in C^*(N)$ to have the value f(m) for each k such that $s_{mk} \ne 0$, and let g(k) = 0 if $s_{mk} = 0$ for all m. Then $Sg(m) = \sum_k s_{mk}g(k) = f(m)$ for all m.

Now let p and q be distinct points of N^* , and choose $f \in C(N^*)$ with $0 \le f \le 1$, f(p) = 1, f(q) = 0. Choose $g \in C(N^*)$ with $0 \le g \le 1$, $S^*g = f$. Since $S^*g(q) = 0$, g vanishes on L_q . If $L_q \cap L_p \ne \emptyset$, then $f(p) = S^*g(p) < 1$, a contradiction. Hence L_p and L_q are disjoint.

- 3.2. Lemma. Let $S=(s_{mn})$ be a nonnegative regular matrix such that
- (a) $\lim(m\to\infty) \sup\{s_{mn}: n\in N\}=0$, and
- (b) the rows of S have disjoint supports.

Then K_S contains no P-points.

PROOF. First we show that if F is any ultrafilter in N and t is the infimum over $A \in F$ of the quantities $\limsup(m \to \infty) \sum \{s_{mn}: n \in A\}$, then t=0. Suppose t>0. By (a) we may assume $s_{mn} < t/4$ for all m and n. Choose $A \in F$ such that

$$\limsup (m \to \infty) \sum \{s_{mn} : n \in A\} < (\frac{4}{3})t.$$

Then M exists such that $\sum \{s_{mn}: n \in A\} < (\frac{4}{3})t$ whenever $m \ge M$. Let $L_m = \{k: s_{mk} \ne 0\}$, so that, by (b), L_m and L_p are disjoint whenever $m \ne p$. For each m, let g(m) be the largest integer in L_m such that

$$\sum \{s_{mn} : n \in A, n < g(m)\} < {3 \choose 4}t.$$

Then, unless $\sum \{s_{mn}: n \in A\} < (\frac{3}{4})t$, we have

$$\sum \{s_{mn}: n \in A, n \leq g(m)\} \geq {3 \choose 4}t.$$

Let $B = \bigcup_m L_m \cap [0, g(m)) \cap A$. Since F is an ultrafilter, either $B \in F$ or $C = A \setminus B \in F$. But $B \notin F$ because

$$\lim \sup(m \to \infty) \sum \{s_{mn} : n \in B\} \leq {3 \choose 4}t < t.$$

We shall obtain a contradiction by showing $C \notin F$ as well. Let $m \ge M$. If $\sum \{s_{mn}: n \in A\} < (\frac{3}{4})t$, then $\sum \{s_{mn}: n \in C\} < (\frac{3}{4})t < (\frac{5}{6})t$. If $\sum \{s_{mn}: n \in A\} \ge (\frac{3}{4})t$, then since $s_{m,g(m)} < t/4$ we have

$$\begin{aligned} & (\frac{4}{3})t > \sum \{s_{mn}: n \in A\} \\ & = \sum \{s_{mn}: n \in A, n \leq g(m)\} + \sum \{s_{mn}: n \in C \setminus \{g(m)\}\} \\ & \geq (\frac{3}{4})t + \sum \{s_{mn}: n \in C \setminus \{g(m)\}\} \\ & > t/2 + s_{m,g(m)} + \sum \{s_{mn}: n \in C \setminus \{g(m)\}\} \\ & = t/2 + \sum \{s_{mn}: n \in C\}, \end{aligned}$$

whence again $\sum \{s_{mn}: n \in C\} < (\frac{4}{3})t - t/2 = (\frac{5}{6})t$. Hence

$$\lim \sup \{m \to \infty\} \sum \{s_{mn} : n \in C\} \leq (\frac{5}{6})t < t,$$

so $C \notin F$.

Now suppose F is the filter of sets corresponding to a P-point p in N^* . By what we have just shown, there exists, for each n, an $A(n) \in F$ with

$$\lim\sup(m\to\infty)\sum\left\{s_{mk}:k\in A(n)\right\}<1/n.$$

Since p is a P-point, there exists $A \in F$ with $A \setminus A(n)$ finite for all n, whence

$$\lim\sup(m\to\infty)\sum\{s_{mk}:k\in A\}=0.$$

If $B=N\setminus A$, then $\lim(m\to\infty) \sum \{s_{mk}: k\in B\}=1$. Hence $B\in F_S$, and $K_S\subseteq B^*$ while $p\notin B^*$.

4. A more general result. As pointed out by the referee, it is not necessary to assume that $T=(t_{mn})$ is regular and nonnegative, but only that it satisfy conditions (1), (2) and (3) of the Introduction. Then $T(c_0) \subset c_0$, and again we get an operator T^* on $C(N^*)$, with support defined by the formula $K_T = \text{cl} \bigcup \{K_p : p \in N^*\}$. To the author's knowledge, unless T is nonnegative it is not known whether K_T is a P-set (see [H-I] and the proofs of the Henriksen-Isbell theorem which occur on p. 440 of [A] and p. 414 of [H-S]. Apparently the difficulty is that unless $T \ge 0$, it is not clear how to describe K_T , as in the first sentence of the Introduction, as the intersection of summable sets). To show the theorem holds for this case, we show that K_T contains the support set of a nonnegative regular matrix.

As in the first paragraph of §3, we may assume T is truncated, and choose a submatrix $S=(s_{mn})$ of T such that distinct rows are disjoint, and such that (1), (2), and (3) are satisfied. Then (as can be seen from the proof of 2.3) $K_S \subset K_T$. For each m and n, let $p_{mn}=\max\{s_{mn},0\}$, $q_{mn}=-\min\{s_{mn},0\}$, $P=(p_{mn})$, and $Q=(q_{mn})$. P and Q both satisfy (1) and (2), and at least one of them (say P) satisfies (3). By taking a submatrix of P if need be, we may assume

(4)
$$\lim\inf(m\to\infty)\sum_{n}p_{mn}>0.$$

Let $P_m = \sum_n p_{mn}$, $r_{mn} = p_{mn}/P_m$, and $R = (r_{mn})$. Then $K_R \subseteq K_T$, and R is regular and nonnegative.

4.1. QUESTION. It is not known if the continuum hypothesis is needed to prove the existence of P-points in N^* . Is it needed to prove the existence of Borel measures on N^* whose support sets are P-sets?

REFERENCES

[A] R. E. Atalla, On the multiplicative behavior of regular matrices, Proc. Amer. Math. Soc. 26 (1970), 437-446. MR 42 #6633.

[H-I] M. Henriksen and J. Isbell, Multiplicative summability methods and the Stone-Čech compactification. II, Notices Amer. Math. Soc. 11 (1964), 90-91. Abstract #608-116.

- [H-S] J. D. Hill and W. T. Sledd, Approximation in bounded summability fields, Canad. J. Math. 20 (1968), 410-415. MR 36 #5561.
- [P] G. M. Petersen, Regular matrix transformations, McGraw-Hill, London, 1966, MR 37 #642.
- [Ra] J. Rainwater, Regular matrices with nowhere dense support, Proc. Amer. Math. Soc. 29 (1971), 361.
- [R] W. Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409-419; Correction, ibid. 633. MR 18, 324.

DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY, ATHENS, OHIO 45701