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CONVEX METRIC SPACES WITH 0-DIMENSIONAL MIDSETS

L.  D.  LOVELAND AND J. E. VALENTINE

Abstract. Let X be a nontrivial, complete, convex, locally

externally convex metric space. Assuming that the midset of each

pair of points of X is O-dimensional and that any nonmaximal

metric segment that intersects a midset twice lies in that midset,

we show that X is isometric to either the euclidean line E1 or to a

1-dimensional spherical space Slc[ (the circle of radius a in the

euclidean plane with the "shorter arc" metric).

The midset of two distinct points a and b in a metric space is defined as

the set of all points x in the space for which the distances ax and bx are

equal. A metric space X is said to have the weak linear midset property

(WLMP) if, for each pair of its distinct points a and b, a nonmaximal

(with respect to inclusion) metric segment S belongs to the midset M(a, b)

whenever Sr\M(a, b) contains two points. If, in addition to the WLMP,

each midset of a space A" is a O-dimensional set, then we say that X has the

O-dimensional weak linear midset property (0-WLMP). We use the

0-WLMP to characterize the euclidean line E1 and 1-dimensional spherical

space Sli(t among complete, convex, and locally externally convex metric

spaces. A 1-dimensional spherical space Sla is the circle of radius cc in the

euclidean plane under the "shorter arc" metric.

Berard [2] characterized a topological simple closed curve among convex

complete metric spaces with the condition that each midset consist of two

points—the double midset property (DMP). We show that Berard's

conditions actually yield a characterization of a 1-dimensional spherical

space.

In another paper, Berard [1] showed that, among connected metric

spaces, intervals are the only spaces in which all midsets are singleton

sets. This condition on the midsets was called the unique midset property

and is abbreviated UMP. Busemann [4] has given characterizations of

euclidean, hyperbolic, and spherical spaces among his G-spaces by im-

posing convexity on the midsets.
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A metric space X is called locally externally convex if, for each of its

points p, there is a neighborhood N of p such that if x and y belong to N,

then there exists a point z in N such that xyz ixyz means that x^y^z and

xy+yz=xz). For other definitions and notation the reader is referred to

[3] and [4].

Theorem 1. If X is a nontrivial, convex, locally externally convex,

complete, metric space with the UMP, then X is isometric to the euclidean

line E1.

Proof. The convexity of X implies that X is connected, so the con-

ditions given by Berard in [1] are satisfied. Thus, by [1], Zis homeomorphic

either to a closed interval, a closed ray, or to Ex. Of course the local

external convexity on X rules out both the interval and the ray. Now it is

an easy exercise to prove that a convex, complete, metric space is iso-

metric to E1 if it is homeomorphic to E1.

The following theorem is an extension of the characterization given in

[2] by Berard.

Theorem 2. If X is a nontrivial, convex, complete, metric space with

the DMP, then X is isometric to a {-dimensional spherical space.

Proof. It follows from [2] that X is homeomorphic to a circle, so it

remains to produce an isometry between X and a round circle. If a and x

are two points of X, it follows from the fact that X is convex and compact

that there is a maximal segment Sia, b) in X containing x. Now let {xn} be a

sequence of points in X— Sia, b) converging to b, and let N be an integer

such that for «>A7 we have axxXn. From the convexity of X and the con-

tinuity of the metric, it follows that axxb. Thus the union of the two seg-

ments Sia, xf) and S(xlt b) is a segment S'(a, b) (see Lemma 15.1 of [3]).

Since S(a, b)nS'(a, b)={a, b} and Xis a simple closed curve, we see that

X=S'(a, b)US(a, b). Let C be the circle in E2 given by the equation

x2+y2=(ab\-rr)2 with the "shorter arc" metric. It is clear that if H and H'

are two semicircles whose union is C, then isometries exist between S(a, b)

and H and between S'(a, b) and H'. Let/denote the injective map of X

onto C defined by these isometries, and let f(x) be denoted by x'. It will be

clear that/is an isometry once we show that/preserves distances for two

points x and y in the interiors of S(a, b) and S'(a, b), respectively. We may

assume that xay. If x'a'y holds we have xy=x'y. It can be shown that

x'b'y' implies xby. Thus xy=x'y .

Theorem 3. If X is a nontrivial, complete, convex, locally externally

convex, metric space with the 0-WLMP then X is isometric either to the

euclidean line E1 or to a l-dimensional spherical space.
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Proof. We shall show that either X has the DMP or the UMP, so that

Theorem 3 will follow from Theorems 1 and 2. Our first step is to show that

X contains no ramification points. A point q is called a ramification point

if there exist distinct points/», r, r' such that q is a midpoint ofp and r and

q is also a midpoint ofp and r'. In the setting of this theorem a ramification

point of X would lie in each of the distinct segments S(p, r) and S(p, r'),

and no generality is lost in assuming that qr=qr'. But this puts/? and q in

M(r, r')nS(p, r), and it follows from the WLMP that the segment S(p, r)

lies in M(r, r'). This contradicts the fact that M(r, r') is O-dimensional, and

we see that X has no ramification points.

Suppose now that there exist two distinct points a and b in X such

that M (a, b) consists of the point m. Since there are no ramification

points in X it follows that every point t of X must be linear with a and b.

Thus X has the UMP and, from Theorem 1, we see that X is isometric

with E1.

If no pair of distinct points of X has a singleton set as a midset, then

every midset contains at least two points. We now show that under this

hypothesis, X has the DMP. Suppose to the contrary that some distinct

pair of points a and b has a midset containing at least three points x,y, and

z. From the 0-WLMP it follows that each segment having endpoints in

M(a, b) is maximal and intersects M(a, b) at no other points. Let Su S2,

and S3 be three distinct maximal segments with endpoints exhausting each

pair in the set {x, y, z}. We may assume a labeling so that two of these

segments, say Sj and S2, lie, except for their endpoints, closer to a than to

b, and we may assume that Sx<^S2={z}, since there are no ramifications in

X. Let {*,} and {yA be sequences in Sx and S2, respectively, converging to z.

Now, for each i, the segments S(b, x,) and S(6,/¿) must intersect M(a, b)

exactly once. A positive integer N exists such that, for i>N, neither

S(b, x¿) nor S(b,yf) contains x or y, for otherwise the continuity of the

metric would yield bxz or byz which, in light of Lemma 15.1 of [3], con-

tradicts the fact that both Sx and 52 are maximal. Furthermore not both of

these segments, for any i, can contain z, for then z would be a ramification

point of X. Thus for each i>N there is a point jji, in M (a, b) and in either

S(b, xf) or S(b, yf) such that jw¿ is not in the set {x, y, z}. Similar reasoning

makes it clear that {m¡} contains infinitely many distinct points. Since both

{x(} and {y¡} converge to z, the continuity of the metric insures that {mA

converges to z. Now, for each i, there is a maximal segment S(z, mf). Of

course the sequence {zmA of lengths of these segments converges to zero,

and this contradicts the local external convexity of X. Thus in this case X

has the DMP, and it follows from Theorem 2 that X is isometric to a 1-

dimensional spherical space.
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