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DISTRIBUTION OF SEMI-fc-FREE INTEGERS

D.  SURYANARAYANA  AND R.  SITA  RAMA  CHANDRA  RAO

Abstract. Let Qt(x) denote the number of semi-£-free

integers £¡x. It is known that Q*(x)=ai*x+0(x1/k), where a* is a

constant. In this paper we prove that

Aîto = fiîto - «Î* = 0(x1/k cxp{-A lof^xQoglogx)-1^}),

where A is an absolute positive constant. Further, on the assump-

tion of the Riemann hypothesis, we prove that

A*(x) = 0(jc2""+1> exp{/l log x(iog log x)~1}).

1. Introduction. Let k be a fixed integer _2. A positive integer n is

called semi-rc-free, if the multiplicity of each prime factor of n is not

equal to k or, equivalently, if n is not divisible unitarily by the kth power

of any prime. By a unitary divisor we mean, as usual, a divisor d>0 of n

such that (d, nfd)—\. The integer 1 is also considered to be semi-fc-free.

Let Qt denote the set of semi-fe-free integers and let q*(n) denote the

characteristic function of the set of semi-ic-free integers, that is, q*(n)= 1

or 0 according as n e Q* or n $ Q$. Let x denote a real variable _1 and

let Qt(x) denote the number of semi-fc-free integers _x. Recently, the

first author [3] pro\ d that

(1.1) Q*(x) = a*x + 0(xxlk),

where

the product being extended over all primes p.

The object of the present paper is to improve the order of the error term

in (1.1) to 0(xxikb(x)), where <5(x)=exp{-,4 log^xflog log x)~1/5}, A

being a positive constant. We further improve the above order estimate to

0(x2n2k+x)co(x)), on the assumption of the Riemann hypothesis, where

co(x)=exp{A log x(log log x)-1}, A being a positive constant.
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2. Preliminaries. Let p(n) and q>(n) respectively denote the Möbius

function and the Euler to tient function. Let o* (n) denote the sum of the

sth powers of the square-free divisors of n. Let q>(x, ri) denote the Legendre

to tient function, which is defined to be the number of positive integers

^x which are relatively prime to n. It is known (cf. [1, Lemma 3.4]) that

forx^l,

(2.1) cp(x, ri) = x<p(ri)ln + 0(r(ri)),

where the 0-constant is independent of« and x, r(ri) being the number of

divisors of n.

Remark. Hereafter, all the constants implied in the O-symbols are

independent of n and x.

It is also known (cf. [3, Lemma 2]) that

(2.2) «t =¿—— = 1 N1-- + —I.
n=l     « „     \ P P      I

It can be easily shown by using standard arguments that

(2.3) 2 Hr = °(xl-U)>   for s > 0 and 0 < m < 1.
nal    «"

We need the following

Lemma 2.1. (Cf. [5, Lemma 3.5].)   For x_3 and for every e>0,

(2.4) Mn(x)=      2      Km) = 0(oiL1+Ân)xô(x)),
m^x'Am,n)=l

where

(2.5) ô(x) = exp{-A log3'5 x(log log x)~1/5},

A being a positive constant.

Lemma 2.2. (Cf. [5, Lemma 5.2].) If the Riemann hypothesis is true,

then, for x^.3 and for every £>0,

(2.6) Mn(x)=       2      Km) = 0(o-*1/2+c(n)x1/2co(x)),
m£x:(m,n)=l

where

(2.7) co(x) = exp{A log x(Iog log x)'1},

A being a positive constant.

Lemma 2.3.   For x_3 and for every e>0,

(2.8) 2      Km)m = 0(a*x+c(n)x2o(x)).
m£x',(in,n)=l
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If the Riemann hypothesis is true, then

(2.9) 2      Mm)m = 0(cr*1/2+£(n)x3/2co(*))-

Proof.   (2.8) and (2.9) follow by partial summation and making use

of (2.4) and (2.6) respectively.

Lemma 2.4.   Forx_3,

(2.10) N(x) = 2 M"M«) = 0(x2<5(x)).
n^x

If the Riemann hypothesis is true, then

(2.11) N(x) = 2 p(n)<p(n) = 0(x3/2co(x)).
nix

Proof.   Since ç>(ii)=2m_» p(d)b (cf. [2, (16.3.1)]), we have, by (2.8),

2 Kn)<p(n) = 2 M(dô)p(d)b =      2     l*(d)p(b)p(d)b
náx dial <Wái;(d.í)=l

= 2 Ad)      2      /W
dáx ¿áx/d:(á.d)=l

\   «ex     i" w/

We note that x£ó(x) is monotonie increasing for every e>0, so that we

have

1^!äJA_irJ^lMtIA
„Sx       "" \n' X   «Sx    n" \n'      \n'

^-•Xá(x)2-T=r-
x „gx   n

= <5W2I71 = 0(,5W)'
«ax«

since r(ri)=0(ne) for every s>0 (cf. [2, Theorem 315]). Hence

2M")<P(») = 0(x2b(x)),

so that (2.10) follows.
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Making use of the same argument adopted above, but using (2.9)

instead of (2.8), we get (2.11).

Lemma 2.5.   For x^.3, s>2,

(2.12) 1áf}im = 0m\
„>x     n$ \xs_7

If the Riemann hypothesis is true, then

(2,3) jefiuSS.o^t).

Proof. Putting f(ri)=\¡ns, it is easy to show that f(n+\)—/(«)=

0(l/ns+1). Therefore by partial summation we have

r-^ = lKnMn)f(n)
(2.14)   ">x     n

= -N(x)f([x] + 1) - 2 N(n){/(« + 1) -/(«)}•
n>a:

Substituting in (2.14), the O-estimate of N(x) obtained in (2.10), we get

(2.12) after some simple manipulation as in (cf. [4, Lemma 2.2]).

Similarly, substituting in (2.14), the O-estimate of N(x) obtained in

(2.11), we get (2.13).

3. Main results,   in this section we prove the following.

Theorem 3.1.   For x_3,

(3.1) Q*(x) = x*x + 0(x1/ko(x)),

where a* is given by (1.2) and ô(x) is given by (2.5).

Proof.    We have (cf. [3]) that ?*(«)= 2>4_„;W.i>_i p(d). Hence

Ö**« - 2 <?**(") = I   t    2      Kd) =       2      Kdf
nil nSx d S=nAd.ö)=l d óSx;(d.ó)=l

Let z=xllk and 0<p=p(x)<l, where p(x) will be chosen suitably

later. If dkô^x, then both d>pz and ô>p~k cannot simultaneously hold

good, and so

Gft*)- 2        tf<0 + Md)~ 2        A<<0
(3 2) dkS¿x:d£pz:(d.t)=l dkS^x:à^p '°M,i)=l dSpz.öSp *;(<¡,¿)=1

— Sx + S2 — S3,   say.
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By (2.1), we have

Sx = 2f*(d)      2       l = 2Kd)<p(fk,d)
i%pz        <sSx/d*;(á.d)=l i%pz \" '

n^pz     n ^n^pz '

n=l      " n> pz     n ^n&pz '

- a*x + 0(z*-^î) + 0(Pz log(pz)),

by (2.2), (2.12) and I„éxr(n)=0(x log x) (cf. [2, Theorem 320]). Hence

(3.3) . Sx = a*x 4- 0(Px-kzb(pz)) + 0(pz log z).

We have, by (2.4),

S.-2,     2    ,w-2«.(m-2«.((f*)
ááp-* dá(x/í)l/i;(d.¿)=i »Sp-*       \W    /     „gp-1       \W    /

Since ó(x) is monotonie decreasing and (x/n)1/*_pz, we have á((x/w)1/<:)^

<5(pz). Hence by (2.3),

(3.4) S2 = o(zb\pz) 2  ~jr) = (Kp'-'zKpz)).
\ nip'"     " i

Also, by (2.4) and (2.3), we have

S3 =  2 2     (*(d) =  2 M*(P2) =  I M«0)
aSp"~* dSpz:(d.i)=l ¿Sp * nap"*

(3.5) =o( 2_^-i+t(«)P^(pz))
*n^p '

= 0Ípzb\pz) 2 <¿h») = 0(px-kzo(pz)).

Hence, by (3.2), (3.3), (3.4) and (3.5), we have

(3.6) Q*(x) = a,*x + 0(px-kzb(pz)) + 0(Pz log z).
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Now, we choose

(3.7) p = p(x) = {ÔXx1,2*)}1/k,

and write

f{x) = log3/5(x1/2Ä){log log(x1/2*)}-1/s

(3.8) / 1 \3/5

where C/=log x and F=log log x.

(3.9)   For F=2 log 2k, that is, t/=4A:2, x^exp(4ifc2) we have

i/-*/* < (T - log2fe)-1/5 ^ (F/2)-1/5,

and therefore

(3.10) £fc-3/5{73/5r/-l/5 < y(x) <; fc-3/5{/3/5l/-l/5

(3.11)   We assume without loss of generality that the constant A in

(2.5) is less than 1.

By (3.7), (2.5) and (3.8), we have

(3.12) p = exp{-(A/k)f(x)}.

By (3.9), we have fc-8/5C/3/5F-1/5^(7/2A:.

Hence by (3.10), (3.11), (3.12) and the above,

p = exp{-Ak-8/iU3/iV-1/5} = exp{-fc-8/5(/3/5F-1/5}

= exp{-L72/c} = exp{-^),

so that p>x~1/2k. Hence pz_;c1/2\ Since ô(x) is monotonie decreasing, we

have by (3.7), ô(pz)^ô(x1,2k)=pk. Hence by (3.10) and (3.12), we have

(3.13) P^Kpz) <: p = expi- - fc-8/5t/3/5K-1/5),

so that the first O-term in (3.6) is

O (xVk expi- - fc-8/5l73/5F-1/5j).

Also, the second O-term in (3.6) is

O (x1,k expj- - fc-s/5t/3/5K-1/5}log x\.
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Hence, if A*(x) denotes the error term in the asymptotic formula (3.6),

then we have

(3.14) A*(x) = 0(xx,k exp{-B log3'5 x(log log x)-1/5}),

where B is a constant such that 0<B<(Al2)k~8,i. Hence Theorem 3.1

follows by (3.6) and (3.14).

Theorem 3.2.   If the Riemann hypothesis is true, then, for x_3,

(3.15) Q*(x) = a*x + O(xmzk+1)co(x)),

where a* is given by (1.2) and oj(x) is given by (2.7).

Proof. Following the same procedure adopted in Theorem 3.1 and

making use of (2.6) and (2.13) instead of (2.4) and (2.12), we get the

following instead of (3.6):

(3.16) Q*(x) = x*x + O(pxn-kzmco(pz)) + 0(Pz log z).

Now, choosing p=z~xn2k+X), we see that 0<p<l and p1/2~kzx/2=pz=

x2/(2ft+i) since w(jr) is monotonie increasing, we have <o(pz)^o>(z)^a>(x).

Also, we see that log z=0(w(x)). Hence the first and second 0-terms in

(3.16) are equal to O(x2n2k+X)co(x)). Hence Theorem 3.2 follows.
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