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BIQUADRATIC RECIPROCITY LAWS

EZRA BROWN

Abstract. Let p=q=\ (mod 4) be distinct primes such that

(p\q)=l, and let g = [k,2m, n] be a binary quadratic form of

determinant q which represents p. Subject to certain restrictions on

k and q, we obtain some reciprocity laws for the fourth-power

residue symbols (p\q)¡ and (q\p\.

In [3], K. Bürde proved the following reciprocity law for fourth

powers; in this paper,/? anda are distinct odd primes, (p\q) is the Legendre

symbol and (p\q)n=\ or —1 according as p is or is not a fourth-power

residue of a.

Lemma 1. Writep=x\+x\ andq=a2+b2 with x, and a odd, jc,x2>0,

ab>Oand(p\q)=l. Then

(P I qUq | P\ = (-l)"-1)/4(ax2 - bxx | a).

This result can be formulated in terms of a representation of p by a

form g of determinant q. In the case g= [1, 0, q], Lemma 1 has the form

(p\q)Áq\p)4 = I or (-iy,

according as q=\ or 5 (mod 8), where p=r2+qs2 (see [1]). In the case

g—[2,2, (a+l)/2] and q=\ (mod 8), Lemma 1 becomes

(p\q)i(q\p)i = (e\q)>

where q=2e2—f2 (see [2]). The aim of this paper is to generalize the

results of [1] and [2] in the following manner.

Theorem 1. Let p= 1 (mod 4) andq= 1 (mod 8) be distinct primes for

which p=kr2+2mrs+ns2, where s is odd and the integral form [k, 2m, n]

has determinant a. Suppose each prime divisor ofk is a quadratic residue of

q. Suppose q=ke2—f2 for some integers e andf. Then

(p I q\(q I p)* = (e I q)-
Proof of this theorem employs the techniques of [2]. First we obtain
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parametric representations of the solutions to the diophantine equations

(1) x\ + x\ = kr2 + 2mrs + ns2

and

(2) -q = A2 - kB2 - kC2

with appropriate restrictions on the above numbers. Then we use these

solutions to prove, first

(3) (bB -aC\q)= (ax2 - bxx \ q),

then

(4) (bB -aC\q)=(e\ q).

The solutions of (1) and (2) are obtained exactly as in [2], with 2

replaced by k, with the following slight modifications. In order to find

the solutions of (1), we find it necessary to apply the following theorem of

Kneser to the form F=x2+y2—kz2—kw2, whose reduced determinant is

-k:

Lemma 2 [4]. An indefinite quadratic form in at least three variables is

in a genus of one class provided its reduced determinant is divisible neither

by the cube of an odd prime nor by 16.

We may assume, without loss of generality, that F satisfies the hy-

pothesis of Lemma 2. For, if 4\k, then q=kn—m2= —m2 (mod 4) implies

— 1 is a square (mod 4), which is impossible. Furthermore, the class of g

contains a form with leading coefficient p, since g represents p; hence we

may assume that the leading coefficient k of g is not divisible by the cube

of an odd prime. Thus Fis in a genus of one class, and we may do the rest

of the procedure as in [2], with 2 replaced by k.

The relation (3) is simply a restatement of Lemma 4 of [2] with 2 re-

placed by k, and (4) is a restatement of Lemma 5 of [2] with ¿/replaced by

/ and A2-2(B2+C2) replaced by A2-k(B2+C2). This is where the

assumptions that (a) every prime divisor of A: is aq quadratic residue of q,

and (b) q= 1 (mod 8) are needed. For, in following the proof of Lemma 5

of [2], we obtain

(5) (bB-aC\q)=(e\q)(N(t)\q);

here, N(t) is an integer which divides 4 det/i, where fx=kX2— Y2—Z2.

Since (a) and (b) are in effect, every divisor of 4 det fx=4k is a quadratic

residue of q, and (4) is proved.

Theorem 1 follows from Lemma 1, the fact that q= 1 (mod 8), and

relations (3) and (4).
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Comments. 1. Under the hypotheses of the theorem, it follows that

(p\q)i(q\p)t= 1 or — 1 according as the form [e, 2f, ke] is or is not in

the principal genus of forms of determinant q.

2. Under the hypotheses of the theorem, if h(—q) is the class number of

Q(-J(—q)) and Ok is the order of [k, 2/, e2] in the class group, then

h(-q) = 0 or 20k (mod 40k)

according as (p\q)i(q\p)i=x or —1. This is a consequence of the first

comment.

3. Under the hypotheses of the theorem, let h(—q)=20k (mod Wk);

then (p\q)i(q\p)t= — i- As a consequence of this, the fundamental unit

of Q(y/(pq)) has norm +1, for it is known (see [7]) that if x2—pqy2= — 1

has an integral solution, then (p\q)i(q\p)i=l.

4. Using different methods, Emma Lehmer (see [5]) has obtained

results similar to the ones in this paper; my thanks to her for some helpful

correspondence on this subject.
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