ON COMPOSITE LOOP FUNCTORS1

K. A. HARDIE

ABSTRACT. P is a space with two points in a certain convenient category CG of pointed topological spaces. If $T:CG \rightarrow CG$ is a P-functor and $X \in CG$, we establish a homotopy equivalence $\Omega TX \simeq \Omega T * \times \Omega(X \wedge F)$, where F is the fibre of $T(*): TP \rightarrow T*$.

Let CG denote the category of compactly generated Hausdorff topological spaces with base points (denoted by *) such that, for each $X \in CG$, (X, *) has the homotopy extension property. Let Ω denote the loop space functor for pointed topological spaces. In a recent paper Gray [2] has proved the homotopy equivalence

(1)
$$\Omega(X \vee Y) \simeq \Omega Y \times \Omega(X \times \Omega Y / \Omega Y).$$

The purpose of this note is to obtain a similar decomposition for ΩTX , where $T: CG \rightarrow CG$ is a P-functor [3], [4].

Let (W, V) be an NDR pair in the sense of [7] and suppose that there exists a retraction $\phi: W \rightarrow V$. For each $X \in CG$, let $TX = T_{\phi}X$ be the space obtained from $X \times W$ (i.e. the CG product) by performing the identification

(2)
$$(*, w) = (x, \phi w) \quad (w \in W, x \in X).$$

Given $f: X \rightarrow Y$, let $Tf\{(x, w)\} = \{(fx, w)\}$. Then we have the following

THEOREM. $T = T_{\phi}: CG \rightarrow CG$ is a functor and $\Omega TX \simeq \Omega T * \times \Omega(X \wedge F)$, for each $X \in CG$, where F is the fibre of ϕ .

Let $P \in CG$ be a space with two points. There is a retraction k of P onto its base point. Hence if $S: CG \rightarrow CG$ is a functor, Sk is a retraction of SP onto a subspace isomorphic with S*. S is a P-functor if S is naturally equivalent to T_{ϕ} , for $\phi = Sk$. (The sense differs slightly from that of [3], [4].) For example if $TX = X \lor Y$, $Tf = f \lor i_Y$ (for a fixed $Y \in CG$, $f: X \rightarrow X'$) then T is a P-functor and applying the theorem we recover (1), for $F = (\Omega Y)^+ = P \times \Omega Y/\Omega Y$, as is observed in the proof of [2, Lemma 3]. Let Σ

Received by the editors February 25, 1972.

AMS (MOS) subject classifications (1970). Primary 55D35, 55D10, 55D05, 55E20. Key words and phrases. Loop space, homotopy equivalence, cofibration, wedge.

¹ Prepared with the assistance of South African Council for Scientific and Industrial Research grant 40-332.

denote the suspension functor. Then as another application we shall obtain the following result.

COROLLARY.
$$\Omega(X \times Y/Y) \simeq \Omega X \times \Omega(Y \wedge \Sigma \Omega X)$$
.

Combining the Corollary with (1) yields

(3)
$$\Omega(X \vee Y) \simeq \Omega Y \times \Omega X \times \Omega((\Omega Y) \wedge \Sigma \Omega X),$$

which is consistent with and may be regarded as a nonweak form of [5, 3.7, p. 281]:

$$\Omega(X \vee Y) \simeq (\text{weak}) \Omega X \times \Omega Y \times \Omega(X \triangleright Y).$$

Before proceeding to the proofs of the Theorem and Corollary we remark that the form of the Serre-Cartan construction appropriate to CG uses the space EX of Moore paths in X [1] with compactly generated topology. (In this connection I wish to acknowledge a helpful conversation with Professor Eldon Dyer.) We recall that a Moore path is a pair (f, r), where r is a nonnegative real number and f a map of the closed interval [0, r] into X. There is a map $\lambda: X \rightarrow EX$ given by $\lambda x = (x, 0)$ which is pair-homotopy equivalent to the identity $X \rightarrow X$. It follows that λ has the weak homotopy extension property. Moreover if we set $\mu(f, r) = \min(r, 1)$ we obtain a map $\mu: EX \rightarrow I$ with the property that $\mu^{-1}(0) = \lambda(X)$. Hence, by [6, Satz I], λ is a cofibration. If $X \in CG$, it follows that $EX \in CG$. Similarly let $\Omega'X$ be the space of Moore loops on X. Since $\Omega'X$ has the weak homotopy extension property [9, Satz, p. 180], a second application of [6, Satz I] shows that $\Omega'X \in CG$. If F is the (Moore-path) fibre of $f: X \rightarrow Y$ we have a diagram

$$* \to \Omega' Y \to F = F \to LY$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$* \to X \qquad * \to Y$$

of pullback rectangles and hence by [8, Theorem 12] the morphisms on the top row are cofibrations. Thus $F \in CG$ and $LY \in CG$.

PROOF OF THEOREM. Let $\psi = \psi X$ denote the identification map associated with (2). Then we have a diagram

in which the composite of the bottom row is an equivalence and the lefthand rectangle is a pushout in the category of pointed topological spaces. Moreover an application of [7, Lemma 8.5] shows that (TX, V) is an NDR pair. Since (V, *) is NDR, [7, Lemma 7.2] implies that (TX, *) is NDR and hence $TX \in CG$. Pulling back the Moore path fibration $LT* \rightarrow T*$ (with contractible total space) over the diagram, we obtain an upper diagram

$$(X \times LV) \cup (* \times F) \longrightarrow X \times F \longrightarrow F$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$LV \longrightarrow G \longrightarrow LT*$$

in which G is the fibre of q and the left-hand rectangle is again a pushout. (If in CG a map is pulled back over the pushout of a cofibration then the upper diagram is necessarily a pushout.) Since (G, LV) and $(X \times F, X \times LV \cup * \times F)$ are NDR by [8, Theorem 12], we have

$$G \simeq G/LV \approx X \times F/(X \times LV \cup * \times F)$$

$$\simeq X \times F/(X \times * \cup * \times F) = X \wedge F.$$

But q is a retraction and hence its Serre-Cartan fibration has a cross section. As in [2, Lemma 2] we may obtain $\Omega'TX \simeq \Omega'G \times \Omega'T*$, completing the proof.

PROOF OF COROLLARY. For a fixed $X \in CG$, let $TY = X \times Y/Y$. Certainly T is a P-functor. Moreover ϕ is the folding map $X \vee X \rightarrow X$ and it is easily shown that $F \simeq \Sigma \Omega X$.

REFERENCES

- 1. J. F. Adams and P. J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956), 305-330. MR 17, 1119.
- 2. B. Gray, A note on the Hilton-Milnor theorem, Topology 10 (1971), 199-201. MR 43 #6921.
- 3. K. A. Hardie, Weak homotopy equivalence of P-functors, Quart. J. Math. Oxford Ser. (2) 19 (1968), 17-31. MR 37 #3564.
- 4. ——, Homotopy of natural transformations, Canad. J. Math. 22 (1970), 332-341. MR 41 #6209.
- 5. P. J. Hilton, *Homotopy theory of modules and duality*, Symposium Internacional de Topologia Algebraica, Universidad Nacional Autonoma de Mexico and UNESCO, Mexico City, 1958, pp. 273-281. MR 20 #4588.
- 6. D. Puppe, Bemerkungen über die Erweiterung von Homotopien, Arch. Math. (Basel) 18 (1967), 81-88. MR 34 #6770.
- 7. N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133-152. MR 35 #970.
 - 8. A. Strøm, Note on cofibrations. II, Math. Scand. 22 (1968), 130-142. MR 39 #4846.
- 9. T. tom Dieck, K. H. Kamps and D. Puppe, *Homotopietheorie*, Lecture Notes in Math., vol. 157, Springer-Verlag, Berlin and New York, 1970.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CAPE TOWN, RONDEBOSCH, C.P., SOUTH AFRICA