SOME ALGEBRAIC K-THEORETIC APPLICATIONS OF THE LF AND NF FUNCTORS

ADEREMI O. KUKU

ABSTRACT. Using previous results of H. Bass, we compute $Pic(P^1(R))$ and $L^nN^iK_0(\Lambda[G])$ where R is a commutative ring, Λ any commutative finite algebra over a Dedekind ring, and G any finitely generated free abelian group or monoid.

Introduction. This paper is a sequel to some results on LF and NF functors introduced by Bass in [1]. The notations are those of [1]. In §1, some results are given on Picard group of the projective line and §2 deals with $L^nN^iK_0(\Lambda)$ and $L^nN^iK_0(\Lambda[G])$ for Λ any commutative finite algebra over a Dedekind domain and G a free abelian group or monoid. Lastly we observe that $L^nN^iK_0(A)$ is a filtered $K_0(R)$ -module if A is an algebra over a commutative ring R.

ACKNOWLEDGEMENT. The author feels very grateful to the referee whose suggestions have shortened this paper considerably.

1. Let R be a commutative ring, $\mathbf{Pic}(R)$ the category (with product \otimes) of finitely generated projective modules of rank 1 and (T, T_{\pm}) an oriented cycle. We write $\mathbf{Pic}(P^1(R))$ for the fibre product category

$$\mathbf{Pic}(R[T_+]) \underset{\mathbf{Pic}(R[T])}{\times} \mathbf{Pic}(R[T_-])$$

and denote $K_0(\operatorname{Pic}(P^1(R)))$ by $\operatorname{Pic}(P^1(R))$.

THEOREM 1.1. For $P \in \mathbf{Pic}(R[T_+])$, $P_0 = P \otimes_{R[T_+]} R \in \mathbf{Pic}(R)$; let $P \approx P_0[T_+]$. Then $\mathbf{Pic}(P^1(R)) \approx H_0(R) \oplus \mathbf{Pic}(R)$.

PROOF. From [1, p. 365, Theorem 4.3], we obtain an exact sequence

(I)
$$K_1(\operatorname{Pic}(P^1(R))) \to U(R[T_+]) \oplus U(R[T_-]) \to U(R[T]) \\ \to \operatorname{Pic}(P^1(R)) \to \operatorname{Pic}(R[T_+]) \oplus \operatorname{Pic}(R[T_-]) \to \operatorname{Pic}(R[T]),$$

since $K_1(\operatorname{Pic}(R)) \approx U(R)$ and $K_0(\operatorname{Pic}(R)) \approx \operatorname{Pic}(R)$.

Received by the editors February 14, 1972.

AMS (MOS) subject classifications (1970). Primary 13D15, 18F30.

Key words and phrases. LF, NF, $L^nN^iK_0$, oriented cycle, fibre-product category, Dedekind ring, finitely generated abelian group, E-surjective.

Also by [1, p. 670, Corollary 7.7] and the fact that $LU \approx H_0$ (see [1, p. 671, Proposition 7.8]) we obtain from (I) the following exact sequence

(II)
$$0 \to H_0(R) \xrightarrow{i} \operatorname{Pic}(P^1(R)) \xrightarrow{j} \operatorname{Pic}(R) \to 0.$$

Now define $\eta: \text{Pic}(R) \to \text{Pic}(P^1(R))$ by $\eta[P] = (P[T_+], 1_{P[T]}, P[T_-])$. So $j\eta[P] = j(P[T_+], 1_{P[T]}, P[T_-]) = [P[T_+] \otimes_{R[T_+]} R] = [P]$. So the sequence (II) is split exact and hence $\text{Pic}(P^1(R)) \approx \text{Pic}(R) \oplus H_0(R)$.

COROLLARY 1.2. If R is a commutative-Noetherian ring of stable Serre dimension ≤ 1 then $Pic(P^1(R)) \approx K_0(R)$.

PROOF. Follows from $K_0(R) \approx H_0(R) \oplus Rk_0(R)$ and the fact that $Rk_0(R) \approx \text{Pic}(R)$ if and only if stable Serre dimension $R \leq 1$ ([2, p. 59]).

COROLLARY 1.3. Suppose R is a commutative Artinian ring. Then $Pic(P^1(R)) \approx K'_0(P^1(R)) \approx H_0(R)$. When the cartesian square

$$P(P^{1}(R)) \longrightarrow P(R[T_{-}])$$

$$\downarrow \qquad \qquad \downarrow$$

$$P(R[T_{+}]) \longrightarrow P(R[T])$$

is E-surjective, then $Pic(P^1(R)) \approx K_0(P^1(R))$.

PROOF. Since $\tau_{\pm}: R[T_{+}] \rightarrow R[T]$ are inclusions, $H_{0}(R[T_{\pm}]) \rightarrow H_{0}(R[T])$ are injective and we can replace the K_{0} 's in the exact sequence for $K'_{0}(P^{1}(R))$ in [1, p. 679], by Rk_{0} 's (see [1, p. 466]). The resulting exact sequence is then mapped into (I) in the proof of 1.1 and the result follows by applying 1.1 and Lemma 7.6 of [2].

- 2. Let R be the category of rings (with unit) and Ab the category of Abelian groups.
- LEMMA 2.1. If a functor $F: \mathbb{R} \to Ab$ has the property that $F(\mathbb{R}) \to F(\mathbb{R}/N)$ is an isomorphism when N is a nilpotent ideal of R, then LF, NF have the same property. Hence $L^nN^iK_0$ has this property.

Proof is easy and is omitted.

LEMMA 2.2 ([1, p. 163]). Let R be a Dedekind ring with quotient field L. Suppose Λ is a finite R-algebra. Then there is a largest two-sided nilpotent ideal N in Λ . If Γ is the R-torsion submodule of Λ/N , then Γ is a semisimple ring and $\Lambda/N \approx \Gamma \times A$ where A is an R-order in a semisimple algebra.

THEOREM 2.3. Let R be a Dedekind ring with quotient field L, Λ any commutative finite R-algebra, Γ , A as in 2.2, G a finitely generated free

abelian group or monoid. Then

- (i) $L^nN^iK_0(\Lambda) \approx L^nN^iK_0(\Lambda[G]) = 0$ for n>0 and i>0, or for n>1 and $i\geq 0$,
 - (ii) $\det_0(\Lambda[G]): RK_0(\Lambda[G]) \rightarrow Pic(\Lambda[G])$ is an isomorphism,
 - (iii) $LK_0(\Lambda) \approx LK_0(\Lambda[G]) \approx LK_0(A)$ is a torsion free abelian group,
 - (iv) $K_0(\Lambda[G]) \approx H_0(\Gamma) \oplus K_0(A[G])$,
 - (v) $N^iK_0(\Lambda) \approx N^iK_0(A)$.

Similarly $N^iK_0(\Lambda[G]) \approx N^iK_0(A[G])$.

PROOF. By 2.1 we have $L^n N^i K_0(\Lambda) \approx L^n N^i K_0(\Lambda/N)$. Also

$$L^n N^i K_0(\Lambda[G]) \approx L^n N^i K_0(\Lambda/N[G])$$

- from (2.1) and Grothendieck's theorem [1, p. 636]. Since $\Lambda/N = \Gamma \times A$, the above theorem reduces to $\Lambda = \Gamma$ and $\Lambda = A$.
- So (i) follows from [1, p. 688, Theorem 10.2]; (ii) follows from [1, p. 690, Theorem 10.4]; (iii) follows from [1, p. 690, 10.4(c)], Grothendieck's theorem, and [2, Lemma 7.6]; (iv) follows from Grothendieck's theorem, and $Rk_0(\Gamma) = Pic(\Gamma) = 0$, Γ being semisimple; (v) follows from [1, p. 685, Theorem 10.1].
- COROLLARY 2.4. Suppose R, Λ , Γ are as in 2.3, then $Pic(P^1(\Lambda)) \approx K_0(\Lambda)$. If R=Z or F[t], the polynomial ring in t over a finite field, then $Pic(P^1(\Lambda))$ is a finitely generated abelian group.

PROOF. Follows from the union of 1.1, 2.3 and [1, p. 545, Theorem 2.7].

3. Let A be an algebra over a commutative ring R. In [1, p. 473], Bass defined a $K_0(R)$ -module filtration $F_R^i K_0(A)$ on $K_0(A)$ using the space $\max(R)$ of maximal ideals of R.

We now observe the following:

3.1. If a functor F on R-algebras has a natural filtration, so do LF and NF. So, if F is a filtered $K_0(R)$ -module so are LF and NF. Hence $L^nN^iK_0(A)$ is a filtered $K_0(R)$ -module.

Proof is easy and is omitted.

REFERENCES

- 1. H. Bass, Algebraic K-theory, Benjamin, New York, 1968. MR 40 #2736.
- 2. H. Bass and M. P. Murthy, Grothendieck groups and Picard groups of abelian group rings, Ann. of Math. (2) 86 (1967), 16-73. MR 36 #2671.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IBADAN, IBADAN, NIGERIA