WEAKLY COMPACT POSITIVE OPERATORS ON SUMMABLE FUNCTIONS

PAUL C. SHIELDS

ABSTRACT. This paper uses elementary integration and operator techniques combined with some theorems of Nakano to give a simple proof of the well-known Dunford-Pettis theorem for positive operators.

The Dunford-Pettis theorem [1] states that a weakly compact linear operator on L^1 which has separable range maps weakly convergent sequences into norm convergent sequences. We prove

THEOREM 1. If T is a weakly compact positive linear operator on $L^1(S, \Sigma, \mu)$ then T maps weakly convergent sequences into norm convergent sequences.

For simplicity let us assume that μ is a finite measure. The space $L^1(S, \Sigma, \mu)$ is a vector lattice where $f \ge 0$ is to mean that $f(s) \ge 0$ a.e. The norm-bounded operators on $L^1(S, \Sigma, \mu)$ also form a vector lattice where $T \ge 0$ means that $Tf \ge 0$ if $f \ge 0$ and $T \lor S$ is defined for $f \ge 0$ by

$$(T \vee S)f = \sup_{0 \le g \le f} Tg + S(f - g).$$

Let $B(L^1)$ denote the set of order-continuous operators on L^1 , that is, $T \in B(L^1)$ if and only if T maps dominated a.e. convergent sequences into dominated a.e. convergent sequences. It is fairly easy to see that $B(L^1)$ consists of all the norm-bounded operators on L^1 . Except for this latter result, all the above definitions and results hold for L^{∞} . If L^{∞} is not finite-dimensional then $B(L^{\infty})$ is a proper lattice subspace of the set of all norm-bounded operators on L^{∞} .

Let L denote either of the two spaces L^1 or L^{∞} and for $N \subseteq B(L)$; let

$$N^{\perp} = \{T \mid |T| \land |C| = 0 \text{ for all } C \in N\}.$$

Suppose φ is the operator defined by $\varphi f = \int f d\mu$, $f \in L$, and that F is the set of operators in B(L) of finite rank. It is easy to see that

(i)
$$T \in F^{\perp \perp}$$
 if and only if $|T| = \sup_{n} |T| \wedge n\varphi$.

Received by the editors March 16, 1971.

AMS (MOS) subject classifications (1970). Primary 47B55, 46A40.

Key words and phrases. Weakly compact operator, positive operator, vector lattice.

Nakano [3, Theorem 5.2] gives the following characterization of $F^{\perp \perp}$.

(ii) $T \in F^{\perp \perp}$ if and only if T maps order-bounded sequences which converge in measure into order-bounded sequences which converge a.e.

A second result of Nakano [3, Theorem 5.3] is the following:

(iii) If $T \in B(L)$ is dominated by an operator in F, then T maps weakly convergent sequences into dominated sequences which converge a.e.

It will now be shown that Theorem 1 is a consequence of (iii). To do this put

$$\lambda(A) = T^*(\chi_A), \quad A \in \Sigma,$$

where T^* is the adjoint of the given positive weakly compact operator T on $L^1(S, \Sigma, \mu)$. Since T^{**} maps L^{1**} into L^1 it follows that λ is weakly countably additive and hence countably additive and absolutely continuous with respect to μ [2, Theorem IV. 10.1]. Thus we can write

$$T^*f = \int f \, d\lambda, \qquad f \in L^{\infty},$$

and obtain

(iv) If $0 \le f_n \le f$ and $\{f_n\}$ converges in measure to 0, then $\{T^*f_n\}$ converges to 0 a.e.

The proof of (iv) is quite similar to the analogous scalar measure result. For any given $\varepsilon > 0$, put $E_n = \{s | f_n(s) \ge \varepsilon\}$ so that

$$T^*f_n = \int_{E_n} f_n \, d\lambda + \int_{E_n^c} f_n \, d\lambda$$

$$\leq \lambda(E_n) \, \|f\|_{\infty} + \varepsilon \lambda(S).$$

Since λ is absolutely continuous with respect to μ it follows that $\|\lambda(E_n)\|_{\infty} \to 0$ and hence that $\lim \lambda(E_n) = 0$ a.e.

Now apply the result (ii) to T^* to conclude that $T^* \in F^{\perp \perp}$ and hence that $T^* = \sup_n (T^*) \wedge n\varphi$. From this it follows easily that $T = \sup_n T \wedge n\varphi$.

This establishes the result

(v) If T is a weakly compact positive operator on L^1 , then there is a sequence $\{T_n\}$ of positive operators which increases to T such that each T_n is dominated by an operator of finite rank.

Suppose $\{a_m\}$ converges to 0 weakly. Then $Ta_m = T_n a_m + (T - T_n)a_m$ so that

(vi)
$$\int |Ta_m| d\mu \leq \int |T_n a_m| d\mu + \int (T - T_n) |a_m| d\mu.$$

Note that $\{|a_m|\}$ is weakly compact, while $\{(T^*-T_n^*)1\}$ decreases to 0, so that

$$\lim_{n} \int (T - T_n) |a_m| d\mu = 0$$

uniformly in m. Furthermore, if n is fixed, the result (iii) gives

$$\lim_{m} \int |T_n a_m| \ d\mu = 0.$$

These two facts combine with (vi) to show that $\lim_{m} \int |Ta_{m}| d\mu = 0$, which completes the proof of Theorem 1.

REMARK. If one can show that

(vii)
$$|T|^{**} = |T^{**}| \text{ for } T \in B(L^1),$$

it is easy to remove the assumption that T be positive in Theorem 1. The result (vii), however, seems very difficult to prove.

BIBLIOGRAPHY

- 1. N. Dunford and B. J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323-392. MR 1, 338.
- 2. N. Dunford and J. T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 3. H. Nakano, *Product spaces of semi-ordered linear spaces*, J. Fac. Sci. Hokkaido Univ. Ser. I 12 (1953), 163-210. MR 16, 49.

Current address: Department of Mathematics, Stanford University, Stanford, California 94305