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WEAKLY COMPACT POSITIVE OPERATORS
ON SUMMABLE FUNCTIONS

PAUL  C.  SHIELDS

Abstract. This paper uses elementary integration and operator

techniques combined with some theorems of Nakano to give a

simple proof of the well-known Dunford-Pettis theorem for positive

operators.

The Dunford-Pettis theorem [1] states that a weakly compact linear

operator on Lx which has separable range maps weakly convergent

sequences into norm convergent sequences. We prove

Theorem 1. If T is a weakly compact positive linear operator on

LX(S, 2, p) then T maps weakly convergent sequences into norm convergent

sequences.

For simplicity let us assume that ¿a is a finite measure. The space

Lx(S,~L,p) is a vector lattice where /_0 is to mean that/(s)^0 a.e.

The norm-bounded operators on LX(S, 2, p) also form a vector lattice

where T=0 means that 7/^0 if/=0 and 7vS is defined for/=0 by

(TvS)f= sup Tg + S(/-g).

Let B(LX) denote the set of order-continuous operators on Lx, that is,

T e B(LX) if and only if T maps dominated a.e. convergent sequences into

dominated a.e. convergent sequences. It is fairly easy to see that B(LF)

consists of all the norm-bounded operators on Ll. Except for this latter

result, all the above definitions and results hold for L°°. If U° is not

finite-dimensional then B(Lœ) is a proper lattice subspace of the set of all

norm-bounded operators on Lx.

Let 7. denote either of the two spaces L1 or L" and for N^B(L); let

/v-x = {r| in a \C\ = 0 for all C e N}.

Suppose q> is the operator defined by <pf=ffdp,feL, and that £is the

set of operators in £(L) of finite rank. It is easy to see that

(i) TeFL± ifandonlyif\T\=supn\T\An<p.
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Nakano [3, Theorem 5.2] gives the following characterization of F11.

(ii) TeFL1- if and only if T maps order-bounded sequences which con-

verge in measure into order-bounded sequences which converge a.e.

A second result of Nakano [3, Theorem 5.3] is the following:

(iii) If Te B(L) is dominated by an operator in F, then Tmaps weakly

convergent sequences into dominated sequences which converge a.e.

It will now be shown that Theorem 1 is a consequence of (iii). To do

this put

X(A) = T*(Xa),       AeX,

where T* is the adjoint of the given positive weakly compact operator T

on L^S, 2, p). Since T** maps L1** into L1 it follows that X is weakly

countably additive and hence countably additive and absolutely continuous

with respect to p. [2, Theorem IV. 10.1]. Thus we can write

T*f=ifdX,     feU>,

and obtain

(iv) If0^fn^fand {/„} converges in measure to 0, then {T*fn} converges

to 0 a.e.

The proof of (iv) is quite similar to the analogous scalar measure result.

For any given e>0, put En={s\fn(s)^e} so that

T*/„=i   LdX + \ JndX

^X(En)\\f\\aa + sX(S).

Since X is absolutely continuous with respect to p, it follows that

P(£n)IL-*0 and hence that lim X(En)=0 a.e.
Now apply the result (ii) to T* to conclude that T* e F11 and hence

that T*=supn(T*)r\n<p. From this it follows easily that T=supn TAntp.

This establishes the result
(v) If T is a weakly compact positive operator on L1, then there is a

sequence {Tn} of positive operators which increases to T such that each Tn

is dominated by an operator of finite rank.

Suppose {am} converges to 0 weakly. Then Tam=Tnam+(T—Tn)am so

that

(vi) j\Tam\ dp = [\Tnam\ dp + [(T - Tn) \am\ dp.

Note that {\am\} is weakly compact, while {(T*—T*)\} decreases to 0,

so that

lim j(T - Tn) \am\ dp = 0
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uniformly in m. Furthermore, if n is fixed, the result (iii) gives

lim f|TnaJ dp. « 0.
m  J

These two facts combine with (vi) to show that limTO J |7aJ dp=0,

which completes the proof of Theorem 1.

Remark.   If one can show that

(vii) \T\** = \T**\   forTeBiL1),

it is easy to remove the assumption that T be positive in Theorem 1. The

result (vii), however, seems very difficult to prove.
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