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AN ANALOGUE OF L'HOSPITAL'S RULE1

MAXWELL rosenlicht

Abstract. Formal power series expansions have proved as

useful in differential algebra as in other fields of mathematics. The

present work magnifies one small aspect of their theory (leading

terms) to get a simple result that is independent of the expansions

themselves and still of considerable utility.

For the convenience of the reader we include a proof of the following

known fact.

Lemma. Let k be a subfield of the field K, which is complete with respect

to a real discrete k-place P whose residue field is separably algebraic over k.

Then the map induced by P from the algebraic closure of k in K into the

residue field is surjective.

The words "real discrete" (or "rank one discrete") mean that P is

associated with a valuation ordP, trivial on k, whose value group is Z.

Since P induces an embedding of the algebraic closure of k in K into the

residue field, we may assume that k is algebraically closed in K and then

have to prove that k is a system of representatives for the residue field. For

some arbitrary fixed a in the residue field, \etf(X) e k[X] be the minimal

polynomial of <x over k, so that /(a)=0,/'(a)îé0. Choose a0 e K to be a

representative for a, so that ordPf(a0)>0, ordP/'(a0)=0. We can define

a,, a2, • • • inductively by setting an+1=an-/(an)//'(an) for n=0, 1, • • • ,

since for each n we get ordP/'(an)=0. For any a e K we have f(X)—

f(a)+f'(a)(X—a)+(element of k[a, X])(X—a)2, and we prove inductively

that for each w=0, 1, • • • we have ordP/(a„)_2n, ordP(a„+1—a„)_2n.

Thus limn_œ an is both a representative of a and a zero off(X), hence an

element of k.

The following is our main result.

Theorem. Let K be afield of characteristic zero, k a subfield of K, P a

real discrete k-place of K whose residue field is algebraic over k, D a

derivation of K that is continuous in the topology of P and that maps k into

itself. Let x, y be nonzero elements of K such that each of x(P), y(P) is
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either 0 or oo. Then

(1) //ordF(£>x/x)=0, then ordP(Dyly)^.0. Here D induces a derivation

on the residue field of P. Denoting this residue field derivation by the same

symbol D,for any z e Ksuch that ordP z^O we have (Dz)(P)=D(z(P));

(2) if ordp(Dx¡x)<0, then ordp(Dx¡x)=oraP(Dy¡y) and therefore

ordp(ylx)=ordp(Dyl Dx). In addition

U\(P) = (—)(P)       (L1'Hospital's rule).

Note that the P-image of an element z e K is here given the geometric

notation z(P). For the proof, note first that since D is continuous in the

topology of P it extends uniquely to a continuous derivation of the com-

pletion of K with respect to P, and we see immediately that it suffices to

prove the theorem when K is complete. Since Dk^k, D maps any element

of K that is algebraic over k into another element algebraic over k. Thus

k may be replaced by its algebraic closure in K. By the lemma the residue

field is now just k, so that if we choose t e K such that ordP /=1 we have

K=k((t)), the field of formal power series in t with coefficients in k. Write

x=2nëiantn, y=2„^bntn, with each an, bnek, ai9±0, b^O. Since

{x(P),y(P)}<={0, oo} we have ordP x=i?¿0, ordPy=jj£Q. By the con-

tinuity of D we have Dx=J,n^i (^an)tn+Œnn nantn-x)Dt and a similar

expression exists for Dy. We shall show that the two cases (1) and (2)

occur in the cases ordP Dt>0 and ordP Dt^O respectively. If ordP Dt>0

we clearly have ordP Dx _ i, ordP Dy^.j, so that ordP(Dx¡x), ordp(Dyly)'^.

0. In particular, if z e K has positive order at P then so has Dz. If z=

2nso cJn, with each c„ e k, then Dz=Dc0+(terms of order >0), so that

(Dz)(P)—Dc0= D(z(P)). Thus everything has been verified for case (1).

We now proceed to case (2), where we have ordP Dt^O. Let the leading

term of Dt be ctm, with c ek, c#0 and m<0. Then the leading terms of

Dx and Dy are, respectively, ¡aid™*''1 aadjb}ctm+i-1. Thus ordP(Dx¡x)=

ordp Dx—ordpx=m — l=ordp(Dyly). Hence ordP(ylx)—ordP(Dy¡Dx).

The last equation to be verified is now clear if ordP(yjx) is nonzero, both

sides then being either 0 or oo. In the final case ordP(_v/x:)=0 we get for the

leading terms of y\x and of Dy\Dx, respectively, aiti\(biV)=aiti~i\bj and

iaictm+i-1¡(jbjctm+>-1)=iaiti-'¡(jb3), and these are equal since now i—j.

We remark that in at least one case it is unnecessary to assume that D is

continuous in the topology of P, since this will automatically be true, and

that is the case where K is a finite extension of k of transcendence degree

one [3, Lemma 1]. But in general the continuity assumption cannot be

omitted, as the following example shows: k is any field of characteristic

zero, K=k(x, y), where x and y are algebraically independent over k,

D = djdy, the derivation on K which is zero on k and x and sends y into 1,
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and P is the ¿-place of K associated with the formal power series em-

bedding K-^k((t)) given by f(x,yy-+f(t, e*), where e* is the usual series

Z"so tn\n\. That D is not continuous may be seen by noting that for any

integer /w^O we have

ordply — 2 xn¡n\\ = m + 1

while

ordpTJMy — y xn¡n\ I = ordP Dy = ordP 1 = 0.

We proceed to give some applications of the theorem. Recall that a

liouvillian extension of a differential field k is a differential extension field

K of k which is obtained by repeated extensions by integrals, or expo-

nentials of integrals, or algebraic elements, that is an extension of k of the

form k(tx, i2, • • • , tn), where for each i=l, • • • , n either t'i is in

k(tx, " " • j ?¡-i)> or t'ilh is in Arfo, t2, ' • •, í¿_,), or í¿ is algebraic over

*('i> 't> * * * > f<-i)-

Proposition. Let k be a differential field of characteristic zero, let n be

a positive integer, and let f be a polynomial in several variables with co-

efficients in k and of total degree less than n. Then if the differential equation

yn=f(y,y',y",---)

has a solution in some liouvillian extension field ofk, it has a solution in an

algebraic extension field of k.

It clearly suffices to prove this under the simpler assumption that the

equation has a solution y in a differential extension field AT of k which is a

finite algebraic extension of a field k(t), where t is transcendental over k and

either t' or t'jt is in k. Let P be a pole of /, that is, a ¿-place of K such that

ordp i<0. Then in either case t' ek or t'\t e k we get ordP t'lt^.0. The

derivation on K is continuous in the topology of P, by the remark im-

mediately following the proof of the theorem. Hence case (1) holds, and

for any x e K we have ordPx'_min(0, ordP x). Thus ordPj/<m>^

min(0, ordPy) for all m_0. If ordP_y<0 then ordPf(y,y',y", ■ ■ -)è

(« —l)ordP7>nordPj=ordPjn, a contradiction. Therefore ordPj(m)_0

for all ffî_0. Hence each y(m)(P) is finite, therefore algebraic over k,

with yim+1)(P) = (y<m)(P))', so that y(P) is a solution of our differential

equation that is algebraic over k.

As an application of the proposition, consider a differential field k of

characteristic zero, elements a,, • • • , an e k, and the homogeneous linear

differential equation

y(n) + axyln-x) + ■ ■ • + any = 0.
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If there is a nonzero solution y of this differential equation and we set

u—y'lytnen we §et y— uy> y"=u j+«/=("'+"2)j, y{3)=(u"+2uu')y+

(u'+u2)y' = (u"+3u'u+u3)y, ■ ■ ■ , j<"> = (i/("-1»-r-n«<n-2)M-|-+un)y, and

our differential equation becomes

u(n-l) + nu(n-% + ... + un + a^n-2) +... + „(»-I)) + ■ ■ ■ + an = 0.

Conversely, if the element m of a differential extension field of k satisfies

this last equation then an element y of a larger differential extension field

of k such that y'ly=u will be a nonzero solution of our original homo-

geneous linear differential equation. A nonzero solution y of the homo-

geneous linear differential equation will be an element of a liouvillian

extension field of k if and only if the corresponding solution u of the non-

linear differential equation is an element of a liouvillian extension field of

k. But the nonlinear differential equation is of the type considered in the

proposition, so that if it has a solution in a liouvillian extension of k then

it has a solution in an algebraic extension of k. Hence // the homogeneous

linear differential equation has a nonzero solution in a liouvillian extension

of k then it has a nonzero solution y such that y'jy is algebraic over k.

Kolchin has given a proof of this (unpublished) by means of his Picard-

Vessiot theory. The case n=2 goes back to Liouville (cf. [2, p. 70]; Ritt

himself gives a formal power series proof); in this case the nonlinear

differential equation is the Riccati equation u+axU+a2+u2=0 associated

with the given homogeneous linear differential equation.

We now show how the proposition may be used to prove that elliptic

functions are not liouvillian. To do this it suffices to show that any element

y of a liouvillian extension of the field C(z) of rational functions of the

complex variable z which satisfies a differential equation

{y'f = y3 + ay + b,    a,beC,       a3/27 + f>2/4 ̂ 0,

is necessarily constant. Note that all elements of C are constant and that

C(z) is itself a liouvillian extension of C, since z'= 1. As above, it remains

only to show that if k^K are differential extension fields of C, with K a

finite algebraic extension of k(t), where t is transcendental over k and

either t' e k or t'\t e k, and if there exists a nonconstant solution y of the

above differential equation in K, then there exists a nonconstant solution

that is algebraic over k. Again let the A>place P of K he any pole of t. The

proposition shows that y(P) is a solution of the differential equation, and

' we are all done unless it happens that/(P)=0. In this troublesome case,

since we have y ?¿0, the place P induces a nontrivial C-place of the

elliptic function field over Cgiven by C(y, y')=C(y), which is the function

field over C of the cubic curve Y\= Y\+a Yx+b. The points of this curve

that are rational over C have a well-known commutative group structure.
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Each point of the curve that is rational over C produces a translation of

the points of the curve which is an automorphism of the curve, equivalent

to one of its function field C(y,y'), and by Kolchin's galois theory [1,

p. 807] the latter is a differential automorphism. For only a finite number of

such differential automorphisms o of C(y) does the place induced by P on

the cubic curve go into one of the finite number of zeros of y', so for any o

distinct from a finite set we have (oy')(P)j^0. In this case (oy)(P) is a non-

constant solution of the differential equation that is algebraic over k, and

the proof is complete. We remark that in [2, p. 87] Ritt proves in an

entirely different manner the weaker statement that elliptic functions are

not elementary. We also remark that the nonliouvillian character of

elliptic functions, indeed the fact that they cannot be obtained by repeated

Picard-Vessiot extensions of C(z), can be proved directly by Kolchin's

methods, based on the idea that any homomorphism between connected

algebraic groups, one linear, the other an abelian variety, is trivial.
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